首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genomic clone spanning a large portion of the 5' untranscribed region of the CD20 gene was isolated. Deletion analysis of subcloned fragments identified several regulatory elements. A major positive cis-acting element was localized between base pairs -290/-186. A second positive regulatory element was localized between -454/-280 and negative regulatory elements were present in the region between bp -828/-454. The sequence -280/-186 conferred B cell-specific expression on a heterologous, TATA box containing c-fos promoter. Electrophoretic mobility shift assays with overlapping oligonucleotide probes spanning -280/-186 revealed that a 25-bp probe (-225/-201) bound a nuclear protein present in B cell lines expressing the CD20/B1 antigen but not in Jurkat (T cell), U937 (promonocytic), U251 (glioma), or HeLa cells. To confirm the functional significance of this sequence, a trimer of this region was subcloned into the c-fos promoter containing CAT plasmid. Expression was observed only in BJA-B and HS-Sultan cells but not in CD20/B1- cell lines. This sequence element is also important in phorbol ester-induced CD20 expression in the pre-B cell line BP-697. These results partially characterize several regulatory elements present in the CD20 promoter that are likely important in the B cell-specific expression of the CD20 gene.  相似文献   

2.
Induction of c-fos mRNA levels associated with the stimulation of growth by fetal bovine serum following quiescence was examined in three cell types following brief (24 h) serum starvation. Starved NIH-3T3 and HeLa S3 cells experienced c-fos mRNA induction 20-30 min after addition of serum. In contrast, Swiss-3T3 cells expressed c-fos constitutively following serum starvation. The pattern of oncogene expression coincided with the level of quiescence of each cell line prior to induction. Serum inductions of c-fos expression was dependent upon the response of each cell line to serum starvation, c-fos expression was also examined in HeLa S3 cells that had been separated into sequential cell cycle phases by centrifugal elutriation, c-fos expression peaked during the earliest part of the synchronous G1 phase. The amount of c-fos mRNA measured was approximately twice that found during other cell cycle phases. This suggests that, in addition to its role during the transition from quiescence, the c-fos gene product may play a regulatory role during the earliest part of G1 phase of the continuous cell cycle.  相似文献   

3.
The bacterial neomycin phosphotransferase gene driven by the Moloney mouse leukemia virus long terminal repeat (LTR) or SV40 early region promoter was introduced into the human promonocyte-macrophage cell line, U937, and into the pluripotential human embryonic teratocarcinoma cell line, NT2/D1. Clonally derived cell lines capable of growing in 2-4 mg/ml of the aminoglycoside antibiotic, G418 (Geneticin), were established and transfected with pHIVCat, a plasmid expressing the bacterial chloramphenicol acetyl transferase (CAT) activity under the control of the human immunodeficiency virus (HIV-1) LTR. All of the G418 resistant (neo(r)) U937 cell lines and 10 of 14 neo(r) NT2/D1 cell lines exhibited reduced basal levels of CAT expression or impaired responses to activation of the HIV-1 LTR by phorbol 12-myristate 13-acetate (PMA) when compared to the parental lines. Other differences included inhibition of tat activation of the HIV-1 LTR and increased sensitivity of U937 cells to human tumor necrosis factor alpha. The expression of other eukaryotic promoters including the HTLV-1 LTR, SV40 ori sequences, and the human beta-actin gene promoter was similarly affected. However, differentiation of the neo(r) U937 cells into macrophages was neither delayed nor impaired. Because PMA is an activator of protein kinase C (PKC) and a potent inducer of HIV-1 directed gene expression, the amounts, sensitivity to G418, and cytosol to membrane translocation of this enzyme were determined in the wild type and neo(r) U937 cells. G418 at concentrations too low to affect cell growth (12-150 micrograms/ml) inhibited PMA-induced transactivation responses in wild type cells but did not inhibit PKC-dependent protein phosphorylation in vitro. PKC activities in the wild type and neo(r) cells were similar in absolute amounts and in the cytosol-membrane distribution of the enzyme. In contrast with wild type cells, however, all of the cytosolic Ca(2+)-phospholipid-dependent form of PKC disappeared from the neo(r) cells within 30 min after PMA induction. The results suggested that, depending upon the cell type, gene cotransfer using aminoglycoside resistance as a selectable marker may seriously perturb important cellular control mechanisms such as the PKC pathway leading to activation of gene expression.  相似文献   

4.
Expression of the K-fgf/hst proto-oncogene appears to be restricted to cells in the early stages of development, such as embryonal carcinoma (EC) cells. When EC cells are induced to differentiate, K-fgf expression is drastically repressed. To identify cis-acting DNA elements responsible for this type of regulation, we constructed a plasmid in which cat gene expression was driven by about 1 kilobase of upstream K-fgf human DNA sequences, including the putative promoter, and transfected it into undifferentiated F9 EC cells or HeLa cells as prototypes of cells which express or do not express, respectively, the K-fgf proto-oncogene. This plasmid was essentially inactive in both cell types, and the addition of more than 8 kilobases of DNA sequences upstream of the K-fgf promoter did not lead to any increase in chloramphenicol acetyltransferase (CAT) expression. On the other hand, when we inserted in this plasmid DNA sequences which are 3' of the human K-fgf coding sequences, we could detect a significant stimulation of CAT activity. Analysis of these sequences led to the identification of enhancerlike DNA elements which are part of the 3' noncoding region of K-fgf exon 3 and promote CAT expression only in undifferentiated mouse F9 or human NT2/D1 EC cells, but not in HeLa, 3T3, or differentiated F9 cells, therefore mimicking the physiological expression of the K-fgf proto-oncogene. Similar elements are also present in the 3' region of the murine K-fgf proto-oncogene, in a region showing high homology to the human K-fgf sequences. These regulatory elements can promote CAT expression from heterologous promoters in an EC-specific manner, suggesting that they interact with a specific cellular transacting protein(s) whose expression is developmentally regulated.  相似文献   

5.
DNA sequences containing the 5' flanking region of the rat somatostatin gene were linked to the coding sequence of the bacterial chloramphenicol acetyl transferase gene. This recombinant plasmid is active in expressing CAT activity in the neuronally derived, somatostatin producing CA-77 cell line. Deletion analyses of the somatostatin promoter show that the sequences proximal to position -60, relative to the cap site are required for expression of this promoter. A 4 base pair deletion of residues -46 through -43 within the somatostatin promoter results in a down mutation in vivo suggesting the existence of an element critical for the expression of the promoter in CA-77 cells. In addition, the somatostatin recombinant and its 5' deletion constructs preferentially express CAT activity in CA-77 cells, whereas only basal level of expression is observed in HeLa, BSC40, and RIN-5F cell lines, pointing to the cell specific nature of this promoter.  相似文献   

6.
The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed.  相似文献   

7.
8.
A high-level and stable expression system of human tissue-type plasminogen activator (t-PA) was accomplished in human cells by selecting a promoter and a host cell line. First, we have constructed two types of t-PA expression plasmids containing 3 kb of the human beta-actin promoter region or 0.3 kb of SV40 early promoter region and these plasmids were transfected into HeLa cells, respectively, and the resulting transfectants were found to secrete various amounts of t-PA derived from the plasmids to the culture media. Southern blot analysis revealed that the beta-actin promoter was more efficient than the SV40 early promoter with regard to the expression level per single copy of the t-PA gene in the transfected HeLa cells. Next, the t-PA expression plasmid containing the beta-actin promoter was also transfected into WI-38 VA13 cells, a human fibroblastic cell line, and KMS-5 cells, a human lymphoid cell line, in order to compare the expression ability of the promoter among these three cell lines. Some of the transfectants from both cell lines were also found to produce t-PA. It was also found that the expression levels in HeLa and WI-38 VA13 seemed to be more efficient than that in KMS-5.  相似文献   

9.
The mouse genomic clone for the prealbumin (transthyretin) gene was cloned, and its upstream regulatory regions were analyzed. The 200 nucleotides 5' to the cap site when placed within a recombinant plasmid were sufficient to direct transient expression in HepG2 (human hepatoma) cells, but this DNA region did not support expression in HeLa cells. The sequence of the 200-nucleotide region is highly conserved between mouse and human DNA and can be considered a cell-specific promoter. Deletions of this promoter region identified a crucial element for cell-specific expression between 151 and 110 nucleotides 5' to the RNA start site. A region situated at about 1.6 to 2.15 kilobases upstream of the RNA start site was found to stimulate expression 10-fold in HepG2 cells but not in HeLa cells. This far upstream element was invertible and increased expression from the beta-globin promoter in HepG2 cells. Unlike the simian virus 40 enhancer, the prealbumin enhancer would not stimulate beta-globin synthesis in HeLa cells, and even the simian virus 40 enhancer did not stimulate the prealbumin promoter in HeLa cells. Thus, we identified in the prealbumin gene two DNA elements that respond in a cell-specific manner: a proximal promoter including a crucial sequence between -108 and -151 nucleotides and a distant enhancer element located between 1.6 and 2.15 kilobases upstream.  相似文献   

10.
Presence of an estradiol response region in the mouse c-fos oncogene.   总被引:1,自引:0,他引:1  
  相似文献   

11.
The use of tissue-specific promoter elements in the treatment of cervical cancer has been explored in this paper. The P105 promoter of human papillomavirus 18 (HPV18) was utilised to direct tissue-specific expression in a number of cell types. Expression was examined in three cervical carcinoma cell lines: HeLa (HPV18 positive), SiHa (HPV16 positive), and C33A cells (HPV negative); the epithelial cell line, H1299; and the foetal fibroblast cell line, MRC5, utilising a luciferase expression vector. Expression was highest in the cervical cell lines by a factor of at least 80. The effect of a number of mutations in the P105 promoter on expression levels was examined. Three deletion constructs of the long control region (LCR) were investigated: an 800 bp fragment (LCR800), a 400 bp fragment (LCR400), and a 200 bp fragment (LCR200), as well as the full length product LCR of HPV18 (LCR1000). The LCR800 construct of the HPV18 P105 promoter had the highest level of expression in the cervical cell lines and was also highest in the HPV18-positive HeLa cell line. Site-directed mutagenesis was then employed on the LCR800 construct to create four further constructs that each had inactivating mutations in one of the four E2 binding sites (E2BSs). Overall, this study indicated that the LCR800 construct of the HPV18 P105 promoter could be utilised as a tissuerestricted promoter in cervical cancer cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
We have identified a novel nucleolar protein, PAP-1-associated protein-1 (PAPA-1), after screening the interacting proteins with Pim-1-associated protein-1 (PAP-1), a protein that is a phosphorylation target of Pim-1 kinase. PAPA-1 comprises 345 amino acids with a basic amino-acid cluster. PAPA-1 was found to be localized in the nucleolus in transfected HeLa cells, and the lysine/histidine cluster was essential for nucleolar localization of PAPA-1. PAPA-1 protein and mRNA expression decreased upon serum restimulation of starvation-synchronized cells, which displayed maximum level of PAPA-1 expression at G0 and early G1 phase of the cell cycle. Ectopic expression of PAPA-1 induced growth suppression of cells, and the effect was dependent on its nucleolar localization in established HeLa cell lines that inducibly express PAPA-1 or its deletion mutant under the control of a tetracycline-inducible promoter. Furthermore, when PAPA-1-inducible HeLa cells were synchronized by thymidine, colcemid or mimosine, and then PAPA-1 was expressed, the proportion of cells at the G1 phase was obviously increased. These results suggest that PAPA-1 induces growth and cell cycle arrests at the G1 phase of the cell cycle.  相似文献   

20.
A recombinant plasmid which contained a gene for diphtheria toxin A-chain (DT-A) under the control of the long terminal repeat (LTR) of bovine leukemia virus (BLV) (BLV-LTR) was constructed to test a novel application of liposomes as antiviral agents. The promoter activity of BLV-LTR was estimated by the chloramphenicol acetyltransferase (CAT) assay using a plasmid which contains the coding sequence of CAT under the control of BLV-LTR (pBLVCAT). When BLV-infected cells were transfected with pBLVCAT, CAT activity was detected. BLV-uninfected cell lines, however, showed no detectable CAT activity. The plasmid DNA entrapped in liposomes was added to BLV-infected cells in culture. Syncytium formation induced by BLV-infected cells was effectively suppressed by the liposomes containing the gene for DT-A under the control of BLV-LTR. Conversely, liposomes containing the gene for DT-A without a promoter showed no such effect. DT-A gene-containing liposomes with BLV-LTR did not affect formation of syncytium induced by bovine immunodeficiency virus. These observations indicate that BLV-infected cells were readily targeted on the level of gene expression. This strategy could be applied to the treatment of BLV-induced B-cell proliferation of cattle, and further to other viral/neoplastic diseases where specific gene expression is exerted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号