共查询到20条相似文献,搜索用时 0 毫秒
1.
Natalie V Pfeiffer Daniela Dirndorfer Lisa M Restelli Charles Hemion Stephan Frank Albert Neutzner Richard Zimmermann Konstanze F Winklhofer Jörg Tatzelt 《The EMBO journal》2013,32(7):1036-1051
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N‐terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein‐like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α‐helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain. 相似文献
2.
Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY-SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme. 相似文献
3.
A membrane preparation that contains proteins characteristic of the rough endoplasmic reticulum 总被引:1,自引:0,他引:1
A Amar-Costesec M Hortsch C Turu 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,62(3):281-288
We describe a procedure for disassembling rat liver rough microsomes, which allows the purification of the rough endoplasmic reticulum (ER) membrane. Membrane-bound ribosomes and adsorbed proteins are first detached by washing rough microsomes with 5 mM Na-pyrophosphate. In a second step, the vesicle membrane is opened by digitonin, with concomitant release of the luminal content. The purification is monitored at each step by electron microscopy, and by assaying chemical constituents (protein, phospholipid, RNA) and marker enzymes for the main subcellular organelles. The final membrane preparation is representative of the ER, since it contains 24.1% of the liver glucose 6-phosphatase with a relative specific activity of 14.2. Contaminants represent less than 5% of its protein content. SDS-polyacrylamide gel electrophoresis, followed by immunoblot analysis, reveals that the ribophorins I and II, two established markers of the rough (d) domain are still present in the final membrane preparation. It also contains the docking protein (or signal recognition particle receptor) and protein disulfide isomerase, and has conserved the functional capacity to remove co- and post-translationally the signal peptide of pre-secretory proteins. The membrane preparation is suitable for studies on the polypeptide composition of the d domain. 相似文献
4.
We have analyzed the interactions between the signal recognition particle (SRP), the SRP receptor (SR), and the ribosome using GTPase assays, biosensor experiments, and ribosome binding assays. Possible mechanisms that could contribute to an enhanced affinity between the SR and the SRP-ribosome nascent chain complex to promote protein translocation under physiological ionic strength conditions have been explored. Ribosomes or 60S large ribosomal subunits activate the GTPase cycle of SRP54 and SRalpha by providing a platform for assembly of the SRP-SR complex. Biosensor experiments revealed high-affinity, saturable binding of ribosomes or large ribosomal subunits to the SR. Remarkably, the SR has a 100-fold higher affinity for the ribosome than for SRP. Proteoliposomes that contain the SR bind nontranslating ribosomes with an affinity comparable to that shown by the Sec61 complex. An NH2-terminal 319-residue segment of SRalpha is necessary and sufficient for binding of SR to the ribosome. We propose that the ribosome-SR interaction accelerates targeting of the ribosome nascent chain complex to the RER, while the SRP-SR interaction is crucial for maintaining the fidelity of the targeting reaction. 相似文献
5.
Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane
下载免费PDF全文

Although the transport of model proteins across the mammalian ER can be reconstituted with purified Sec61p complex, TRAM, and signal recognition particle receptor, some substrates, such as the prion protein (PrP), are inefficiently or improperly translocated using only these components. Here, we purify a factor needed for proper translocation of PrP and identify it as the translocon-associated protein (TRAP) complex. Surprisingly, TRAP also stimulates vectorial transport of many, but not all, other substrates in a manner influenced by their signal sequences. Comparative analyses of several natural signal sequences suggest that a dependence on TRAP for translocation is not due to any single physical parameter, such as hydrophobicity of the signal sequence. Instead, a functional property of the signal, efficiency of its post-targeting role in initiating substrate translocation, correlates inversely with TRAP dependence. Thus, maximal translocation independent of TRAP can only be achieved with a signal sequence, such as the one from prolactin, whose strong interaction with the translocon mediates translocon gating shortly after targeting. These results identify the TRAP complex as a functional component of the translocon and demonstrate that it acts in a substrate-specific manner to facilitate the initiation of protein translocation. 相似文献
6.
In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome-translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome-translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP. 相似文献
7.
Two pathways operate to target newly-synthesised proteins to the endoplasmic reticulum. In one, the signal recognition particle attaches to the signal sequences of nascent chains on ribosomes and slows or stops translation until contact is made with the docking protein at the membrane. The second operates via molecular chaperons. The pathways converge at the level of a 43 kDa signal binding protein integrated into the membrane, where translocation through a proteinaceous pore is initiated. In the lumen, proteins fold and disulphide formation is catalysed by the enzyme protein disulphide isomerase. The heavy chain binding protein may attach to unassembled or unfolded proteins and prevent their exit from the ER to the Golgi. Cholecystokinin (CCK) treatment increases the biosynthesis and secretion of pancreatic proteins, increases the levels of PDI and the 43 kDa binding protein, and reduces levels of BiP. These proteins may be possible targets for genetic manipulation to improve processing of heterologous proteins from cultured mammalian cells. 相似文献
8.
Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome
下载免费PDF全文

Ullers RS Houben EN Raine A ten Hagen-Jongman CM Ehrenberg M Brunner J Oudega B Harms N Luirink J 《The Journal of cell biology》2003,161(4):679-684
As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro-synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. 相似文献
9.
The ribosome regulates the GTPase of the beta-subunit of the signal recognition particle receptor. 总被引:2,自引:0,他引:2
下载免费PDF全文

Protein targeting to the membrane of the ER is regulated by three GTPases, the 54-kD subunit of the signal recognition particle (SRP) and the alpha- and beta-subunit of the SRP receptor (SR). Here, we report on the GTPase cycle of the beta-subunits of the SR (SRbeta). We found that SRbeta binds GTP with high affinity and interacts with ribosomes in the GTP-bound state. Subsequently, the ribosome increases the GTPase activity of SRbeta and thus functions as a GTPase activating protein for SRbeta. Furthermore, the interaction between SRbeta and the ribosome leads to a reduction in the affinity of SRbeta for guanine nucleotides. We propose that SRbeta regulates the interaction of SR with the ribosome and thereby allows SRalpha to scan membrane-bound ribosomes for the presence of SRP. Interaction between SRP and SRalpha then leads to release of the signal sequence from SRP and insertion into the translocon. GTP hydrolysis then results in dissociation of SR from the ribosome, and SRP from the SR. 相似文献
10.
A group of integral membrane proteins, known as C-tail anchored, is defined by the presence of a cytosolic NH2-terminal domain that is anchored to the phospholipid bilayer by a single segment of hydrophobic amino acids close to the COOH terminus. The mode of insertion into membranes of these proteins, many of which play key roles in fundamental intracellular processes, is obligatorily posttranslational, is highly specific, and may be subject to regulatory processes that modulate the protein's function. Although recent work has elucidated structural features in the tail region that determine selection of the correct target membrane, the molecular machinery involved in interpreting this information, and in modulating tail-anchored protein localization, has not been identified yet. 相似文献
11.
Hybridization-selected mRNAs coding for individual storage globulin polypeptides of field beans (Vicia faba L.) were translated in a cell-free system. Added mammalian signal recognition particle (SRP) recognizes cleavable signal peptides of the major vicilin and both legumin polypeptide precursors and induces translational arrest. The latter can be released by potassium-washed membranes (K-RM) leading to shortened polypeptides protected against proteases. Thus, SRP and K-RM function in a similar way with plant polypeptides as described for mammalian secretory proteins [(1981) J. Cell Biol. 91, 557-561]. Obviously, the initial steps in the biosynthesis and processing of plant storage globulin polypeptides are principally identical to those of animal secretory proteins. 相似文献
12.
Bacteria, mitochondria and chloroplasts harbour factors that facilitate the insertion, folding and assembly of membrane proteins. In Escherichia coli, yidC is required for membrane insertion, acting in both a Sec-dependent and a Sec-independent manner. There is an expanding volume of biochemical work on its role in this process, but none so far on its structure. We present the first of this class of membrane proteins determined by electron cryomicroscopy in the near-nativelike state of the membrane. yidC forms dimers in the membrane and each monomer has an area of low density that may be part of the path transmembrane segments follow during their insertion. Upon consideration of the structures of yidC and SecYEG, we speculate on the nature of the interfaces that facilitate the alternative pathways (Sec-dependent and -independent) of membrane protein insertion. 相似文献
13.
Two GTPases in the signal recognition particle and its receptor (FtsY) regulate protein targeting to the membrane by formation of a heterodimeric complex. The activation of both GTPases in the complex is essential for protein translocation. We present the crystal structure of chloroplast FtsY (cpFtsY) at 1.75 A resolution. The comparison with FtsY structures in different nucleotide bound states shows structural changes relevant for GTPase activation and provides insights in how cpFtsY is pre-organized for complex formation with cpSRP54. The structure contains an amino-terminal amphipathic helix similar to the membrane targeting sequence of Escherichia coli FtsY. In cpFtsY this motif is extended, which might be responsible for the enhanced attachment of the protein to the thylakoid membrane. 相似文献
14.
15.
Laura J Byrnes Avtar Singh Kylan Szeto John P O'Donnell Warren R Zipfel Holger Sondermann 《The EMBO journal》2013,32(3):369-384
Atlastin, a member of the dynamin superfamily, is known to catalyse homotypic membrane fusion in the smooth endoplasmic reticulum (ER). Recent studies of atlastin have elucidated key features about its structure and function; however, several mechanistic details, including the catalytic mechanism and GTP hydrolysis‐driven conformational changes, are yet to be determined. Here, we present the crystal structures of atlastin‐1 bound to GDP·AlF4? and GppNHp, uncovering an intramolecular arginine finger that stimulates GTP hydrolysis when correctly oriented through rearrangements within the G domain. Utilizing Förster Resonance Energy Transfer, we describe nucleotide binding and hydrolysis‐driven conformational changes in atlastin and their sequence. Furthermore, we discovered a nucleotide exchange mechanism that is intrinsic to atlastin's N‐terminal domains. Our results indicate that the cytoplasmic domain of atlastin acts as a tether and homotypic interactions are timed by GTP binding and hydrolysis. Perturbation of these mechanisms may be implicated in a group of atlastin‐associated hereditary neurodegenerative diseases. 相似文献
16.
Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding.
下载免费PDF全文

S Vashist W Kim W J Belden E D Spear C Barlowe D T Ng 《The Journal of cell biology》2001,155(3):355-368
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins. 相似文献
17.
18.
19.
Co-translational integration of a nascent viral membrane protein into the endoplasmic reticulum membrane takes place via the translocon. We have been studying the early stages of the integration of a double-spanning plant viral movement protein to gain insights into how viral membrane proteins are transferred from the hydrophilic interior of the translocon into the hydrophobic environment of the bilayer, where the transmembrane (TM) segments of the viral proteins can diffuse freely. Photocrosslinking experiments reveal that this integration involves the sequential passage of the TM segments past Sec61alpha and translocating chain-associating membrane protein (TRAM). Each TM segment is first adjacent to Sec61alpha and subsequently is adjacent to TRAM. TRAM crosslinking extends for a long period during nascent chain biogenesis. In addition, the replacement of the first viral TM segment with a non-viral TM sequence still yields nascent chain photo-adducts with TRAM. TRAM therefore appears to be involved in viral membrane protein integration, and nascent chain recognition by TRAM does not appear to rely solely on the TM domains. 相似文献
20.
High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins
下载免费PDF全文

Lisa Vincenz‐Donnelly Hauke Holthusen Roman Körner Erik C Hansen Jenny Presto Jan Johansson Ritwick Sawarkar F Ulrich Hartl Mark S Hipp 《The EMBO journal》2018,37(3):337-350
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β‐sheet proteins that were designed de novo to form amyloid‐like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER‐β) strongly reduces their toxicity. ER‐β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER‐resident molecular chaperones. ER‐β is not removed by ER‐associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β‐aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β‐sheet structure in the ER interfere with proteostasis. 相似文献