首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To study boron (B) deficiency and toxicity in plants in flowing solution culture, it is necessary to establish a wide range of solution B concentrations. The ability of inductively coupled plasma atomic emisson spectrophotometry (ICPAES) to determine solution B concentrations ranging from 0.15 M to 925 M was investigated. The reliablity of B concentration determination in nutrient solutions containing <10 M B is poor. A technique, involving sorption by a B-specific resin (Amberlite-743), was established to concentrate the B present in low B nutrient solutions and to enable reliable measurement using ICPAES following elution from the resin. Acceptable, reproducible recoveries of B from low B solutions, containing known concentrations of B, were obtained using this technique. The technique enables the imposition, monitoring and maintenance of solution B concentrations well below the direct detection limits of ICPAES and colorimetric procedures. ei]L V Kochian  相似文献   

2.
Blair  Graeme J.  Lefroy  Rod B.  Dana  M.  Anderson  G. C. 《Plant and Soil》1993,(1):379-382
An elemental S oxidation model has been developed which combines a maximum S release rate with modifiers for temperature and soil moisture conditions. This model has been combined with a pasture growth and CNSP nutrient cycling model to match S oxidation rate to pasture S demand. In two Southern Australian enviroments, 100m elemental S was superior to 200m particles whilst in Northern Australia the 200m particles were superior. These models can be used to match S release to plant demand.  相似文献   

3.
Hydrodictyon reticulatum (L.) Lagerh. is a recent addition to the New Zealand flora and is expanding its distribution rapidly. Proliferations of the alga now constitute an economic nuisance in waters which have not previously suffered filamentous algal blooms. To better understand the current and likely future spread of the alga and to identify possible management options the alga's growth requirements have been investigated. A strain isolated from New Zealand tolerated temperatures between 5 and 40 °C and salinities from 0 to 5. Optimal growth was at 25 °C, 150 mol photon m–2s–1 and in freshwater. Nett photosynthesis was saturated at photon flux densities of 100 and 160 mol m–2s–1 at 12 and 20 °C, respectively. Growth rate was linearly related to internal N concentration and hyperbolically to internal P concentration. Minimum cellular nutrient contents, by weight, were 1% N and 0.2% P. Growth was saturated at contents of 5% N and 0.5% P under the conditions of culture (20 °C, 150 mol photon m–2s–1). The alga maintained optimal cellular N content at low ambient nitrate concentrations (100 mg m–3) half optimum content at 18 mg m–3. Affinity for filtrable reactive phosphorus was not unusually high compared to other filamentous algae. We suggest that this alga is occupying a niche in New Zealand which has been precluded from other filamentous nuisance algae by low N concentration and N:P ratio. The significance of these findings in setting environmental targets for management of this nuisance alga is discussed.Author for correspondence  相似文献   

4.
Effects of boron deficiency in cell suspension cultures of Populus alba L.   总被引:5,自引:0,他引:5  
Cell suspension cultures of Populus alba L. (original cells) require at least 10 M boron for appropriate growth. Using original cells we established a cell line, T-5B, which can grow in a medium containing low levels of boron (5 M). The level of boron localized in the cell walls of T-5B cells was one-half that found in the cell walls of original cells maintained in medium containing 100 M boron, and the level of the rhamnogalacturonan II dimer, cross-linked by a borate ester, also decreased in the former. The sugar composition of whole cell walls of the T-5B cell line was similar that of the original cells, however pectic polysaccharides composed of arabinose or galacturonic acid were easily extracted from T-5B cell walls with 50 mM trans-1,2-cyclohexanediamine-N,N,N,N-tetraacetic acid. Our results suggest that boron deficiency causes a weakening of the interaction among pectic polysaccharides due to a decrease in boron-rhamnogalacturonanII cross-linkage.  相似文献   

5.
In many experimental ecological studies on phytoplankton species the growth response of an organism to the prevailing environmental conditions have been studied. Curves relating specific growth rate () to the external nutrient concentration (S) have been constructed to compare nutrient-limited growth of different species under steady state conditions. Microorganisms adapt their physiology to a certain limitation in order to optimize growth. Therefore the shape of the /S curve is closely related to the way a micoorganism adapts its physiology. To see how physiological adaptation and growth rate are interconnected to each other, both can be related to the internal concentration of the growth-limiting nutrient. How the growth rate is related to the internal nutrient concentration is presented in a mathematical equation.Many phytoplankton species during growth under different nutrient limitations show a linear relationship between and the reciprocal value of the internal nutrient content (= Yield). This was originally observed by Droop. The model presented here gives a theoretical explanation of this phenomenon.  相似文献   

6.
This work presents a simple methodology to enumerate ferrous-iron-oxidizing bacteria in solution, easily applicable in bioleaching industrial plants, because it does not require expertise or specific equipment. The enumeration is based on bacterial concentration by microfiltration through a membrane filter. The filter containing the bacteria is placed on an agarose plate containing ferrous sulphate for bacterial growth. No difference was observed for the enumeration of Acidithiobacillus ferrooxidans ATCC 19859 when either 0.1 or 0.22 m pore size membrane filters were used. However, when the technique was applied to bacteria present in pregnant leaching solution, the smaller bacteria present in these solutions passed through the 0.22 m pore size membrane. Therefore the number of bacteria could be underestimated if they are monitored and filtered using a filter with pore size greater than 0.1 m. The limit of detection of this technique was one ferrous-iron-oxidizing bacterium in the filtered solutions.  相似文献   

7.
Noppakoonwong  R. N.  Bell  R. W.  Dell  B.  Loneragan  J. F. 《Plant and Soil》1993,155(1):317-320
The present experiment was undertaken to examine whether shading affects the critical boron (B) concentration for leaf blade elongation in black gram. Six days after germination (D6), black gram seedlings were transferred to 8 pairs of pots containing basal nutrient solution: one pot of each pair contained 1 M H3BO3 and the other 10 M H3BO3. On D10, one day after the emergence of the first trifoliolate leaf blade (TF1) and one day before the emergence of TF2, four pairs of pots were shaded, decreasing the light intensity they received in the glasshouse to about 35% of full sunlight compared with 70% received by the unshaded plants. The response to B supply of dry matter (DM) and elongation rate (LBER) of TF2 were less pronounced in shaded than in unshaded plants. Critical B concentrations for LBER in TF2 of black gram were 10 mg B kg-1DM in shaded and 15 mg B unshaded plants, suggesting that shading may have decreased the B requirement for LBER. Thus the present results suggest that light may need to be considered when setting critical values for the diagnosis of B deficiency in black gram.  相似文献   

8.
We studied the effect of naloxone—an antagonist of the opioid receptors—on sensitivity of Cl-activated Mg2+-ATPase from the plasma membrane fraction of bream brain (Abramis brama L.) to GABAa-ergic substances. Preincubation of the plasma membranes with 1–100 M naloxone increased the basal Mg2+-ATPase activity and suppressed its activation by chloride ions. The same effects were observed in the presence of the agonists of GABAa/benzodiazepine receptors: 0.1–100 M GABA, 1–500 M pentobarbital, and 0.1–100 M phenazepam. Naloxone (10 M) inhibited activation of the basal Mg2+-ATPase by the studied ligands and restored the enzyme sensitivity to Cl. However, the effect of naloxone was not observed in the presence of high concentrations of pentobarbital (500 M) and phenazepam (100 M). The obtained data show that naloxone modulates the activity of Cl-activated Mg2+-ATPase from the plasma membranes of bream brain and antagonizes the GABAa receptor ligands.  相似文献   

9.
The on-line calculated specific rates of growth, substrate consumption and product formation were used to diagnose microbial activities during a lactic acid fermentation. The specific rates were calculated from on-line measured cell mass, and substrate and product concentrations. The specific rates were more sensitive indicators of slight changes in fermentation conditions than such monitored data as cell mass or product concentrations.List of Symbols 1/h specific rate of cell growth - 1/h specific rate of substrate consumption - 1/h specific rate of product formation - * dimensionless specific rate of cell growth - * dimensionless specific rate of substrate consumption - * dimensionless specific rate of product formation - max 1/h maximum specific rate of cell growth - max 1/h maximum specific rate of substrate consumption - max 1/h maximum specific rate of product formation - X g/l cell mass concentration - S g/l substrate concentration - S * dimensionless substrate concentration - S 0 g/l initial substrate concentration - P g/l product concentration  相似文献   

10.
Summary Experiments with tomato, rape and spinach in nutrient solutions have shown that the formation of root hairs is strongly influenced by phosphate and nitrate supply. Decreasing the phosphate concentration of the nutrient solution from 100 to 2 M P resulted in an increase of root hair length from 0.1–0.2 to 0.7 mm of the three plant species. Root hair density also increased by a factor of 2–4 when the P concentration was lowered from 1000 to 2 M. The variation of these two root properties raised the root surface area by a factor of 2 or 3 compared to plants well supplied with P. Root hair length was closely related to the phosphate content of the root and shoot material. On the other hand, spinach plants grown in a split-root experiment produced root hairs in solutions of high P concentration (1000M P) if the major part of the total root system was exposed to low P concentration (2 M P). It is therefore concluded that the formation of root hairs does not depend on directly the P concentration at the root surface but on the P content of the plant.Similar experiments with nitrate also resulted in an increase in length and density of root hairs with the decrease of concentration below 1000 M. In this case marked differences between plant species occurred. At 2 M compared to 1000 M NO3 root hair length of tomato increased by a factor of 2, of rape by a factor of 5 and of spinach by a factor of 9. Root hair length was correlated, but not very closely, to the total nitrogen content of the plants. It is concluded, that the influence of nutrient supply on the formation of root hairs is a mechanism for regulating the nutrient uptake of plants.Dedicated to Prof. Dr. E. Welte on the occasion of his 70th anniversary.  相似文献   

11.
Magnesium uptake kinetics in loblolly pine seedlings   总被引:1,自引:0,他引:1  
Recent studies have suggested that the growth of loblolly pine (Pinus taeda L.) has declined in the southern United States and it has been hypothesized that foliar Mg deficiency may play an important role in the perceived decline. Quantitative nutrient uptake models such as the Barber-Cushman model have been used successfully to investigate nutrient uptake by crop species under a variety of field and experimental conditions and may provide one approach to evaluating this question. However, in order to use this approach it is necessary to develop, for the plant species and nutrient of interest, values for maximal nutrient influx rate at high solution concentrations (Imax), the solution concentration where net influx is 0.5 Imax (Km), and the nutrient concentration below which influx ceases (Cmin). As a first step in evaluating the potential of such an approach, two sets of experiments using established solution nutrient depletion techniques were used to define these values for loblolly pine seedlings 180, 240, 365, and 425 days in age. Observed Imax values for Mg range from 7.90E-8 to 1.29E-7 mol cm–2 s–1 with younger seedlings having higher values. Values of Km for all seedling ages were quite similar ranging from 8.69 to 8.58E-3 mol cm–3. Most importantly, the results of both experiments indicate that during a growth flush, seedlings will withdraw Mg from solution until the concentration is essentially zero (Cmin=0). During non-flush periods uptake rates appear to be greatly reduced. Therefore, efforts to model Mg uptake will need to take these differences as well as seedling age influences into consideration.  相似文献   

12.
The influence of some ions in pre-growth culture medium on chromate reduction by resting cells of Agrobacterium radiobacter strain EPS-916 was investigated. The reduction was dependent on the Fe2+ content of the culture medium: the higher the iron content, the lower the reduction rate. The cells showed maximum chromate reduction when pre-grown in the presence of 0.243 m Mg2+, 20 m Ca2+ and 3.6 m Mn2+. Chromate reduction was not affected by the addition of MgCl2, CdCl2, ZnCl2, MnCl2, Na2SO4 (1000 m), and Na2MoO4 (100 m) to the activity assays. However, activity was inhibited by the presence of Na2SO4 (10 mm), Na2MoO4 (200 m) and ferric citrate.  相似文献   

13.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

14.
El-Hamdaoui  A.  Redondo-Nieto  M.  Torralba  B.  Rivilla  R.  Bonilla  I.  Bolaños  L. 《Plant and Soil》2003,251(1):93-103
The effects of different levels of B (from 9.3 to 93 M B) and Ca (from 0.68 to 5.44 mM Ca) on plant development, nitrogen fixation, and mineral composition of pea (Pisum sativum L. cv. Argona) grown in symbiosis with Rhizobium leguminosarum bv. viciae 3841 and under salt stress, were analysed. The addition of extra B and extra Ca to the nutrient solution prevented the reduction caused by 75 mM NaCl of plant growth and the inhibition of nodulation and nitrogen fixation. The number of nodules recovered by the increase of Ca concentration at any B level, but only nodules developed at high B and high Ca concentrations could fix nitrogen. Addition of extra B and Ca during plant growth restored nodule organogenesis and structure, which was absolutely damaged by high salt. The increase in salt tolerance of symbiotic plants mediated by B and Ca can be co-related with the recovery of the contents of some nutrients. Salinity produced a decrease of B and Ca contents both in shoots and in nodulated roots, being increased by the supplement of both elements in the nutrient solution. Salinity also reduced the content in plants of other nutrients important for plant development and particularly for symbiotic nitrogen fixation, as K and Fe. A balanced nutrition of B and Ca (55.8 M B, 2.72 mM Ca) was able to counter-act the deficiency of these nutrients in salt-stressed plants, leading to a huge increase in salinity tolerance of symbiotic pea plants. The necessity of nutritional studies to successfully cultivate legumes in saline soils is discussed and proposed.  相似文献   

15.
Growth kinetics of 2Nitrobacter strains (N.w. and L) coexisting in the same soil are studied in batch and continuous culture. Monod's parameters are estimated numerically from experimental data in the case of the batch experiment, and from steady-state equations in the case of the chemostat. In both cases, the 2 strains show different values for their growth parameters. N.w. may be characterized by its high max-Ks values, relative to strain L. But for each strain, max is significantly lowered between batch and continuous culture. In this latter case, at N-NO2 concentrations less than 1.5g·ml–1, the 2 strains exhibit similar growth rates showing that for concentrations of the limiting substrate prevailing in the soil, they may compete for this substrate.  相似文献   

16.
Agnolon  Fabio  Santi  Simonetta  Varanini  Zeno  Pinton  Roberto 《Plant and Soil》2002,241(1):35-41
Development of the coordinated response to decreasing Fe availability was studied in cucumber plants grown in nutrient solution (NS) over a range of FeIII-EDTA concentrations (from 0.1 to 80 M). Physiological and biochemical parameters were evaluated in intact roots, root extracts and plasma membrane (pm) vesicles. Acidification of the NS was evident in plants grown at 1 M FeIII-EDTA and inversely related to the external Fe concentration. FeIII-EDTA reduction by intact roots was also gradually depressed by increasing Fe supply. The rate of net nitrate uptake by the roots was directly related to the amount of FeIII-EDTA added to the NS. Activity of pmH+-ATPase was significantly higher in plants grown without added Fe as compared to those grown at 80 M Fe. A lower increase, dependent on Fe concentration, was observed at 0.1, 1, 5 or 10 M FeIII-EDTA. Activity of pmFeIII-EDTA reductase was also increased by Fe deprivation and strongly correlated with pmH+-ATPase activity. PEP-carboxylase activity gradually increased with decreasing Fe concentration in the NS. Changes in activity and amount of the enzyme showed a close correlation with parameters measured in intact roots (nitrate uptake, FeIII-EDTA reduction). Results show that the development of the Fe-deficiency response in cucumber roots can be finely tuned by the level of Fe supply. Adjustments to different levels of available Fe involve a correlated modulation of pm-associated enzymes. PEP-carboxylase activity appeared to be a suitable metabolic marker of the Fe nutritional status of the plant.  相似文献   

17.
Dennis Lazof  André Läuchli 《Planta》1991,184(3):334-342
A volume of tissue of lettuce (Lactuca sativa L.) plants extending 2 mm basipetally from the apical meristem and including leaf primordia and young expanding leaves was surveyed using electron-probe microanalysis (EPMA) on both frozen-hydrated and freeze-dried samples. This analysis was carried out either 2 or 5 d following NaCl salinization of the medium from the 10 mol · m–-3 control level up to 80 mol · m–-3. The objective was the investigation of possible changes in the nutritional status of the apical meristem that might account for some aspects of salt-induced growth inhibition. Sodium and chloride increased significantly in tissues basal to the apical meristem, while both phosphorus and potassium decreased in the same region. These changes were evident in specimens collected just 2 d after the commencement of salinization (20 h after completion of the salinization) and were not exacerbated by an additional 3 d of treatment; they were present in tissue as close as 100 m to the meristem and extending down to 500 m. The apical 10–50 m were relatively protected from both the increase in sodium and chloride and the decrease in phosphorus and potassium that occurred in more basal regions. Young leaves (up to 1.5 mm in length) appear to control their own mineral nutrient levels when challenged by salinization of the medium, presumably because of altered growth. A decrease in the concentration of total Ca as a result of salinization was significant in cells 500 m basal to the meristem, but was evident as a tendency in the data even within the first 50 m. Using an improved automatic method for the analysis of calcium by EPMA, it was found that total Ca was reduced by salinization, especially in basal regions (500 m below the apex) and also in young leaves (1–1.5 mm in length). We suggest that the nutrition of the shoot apical meristem may be disturbed soon after salinization and that the shoot meristem might be the source of a signal to expanding leaves, as well as exerting its own direct influence over leaf emergence.Abbreviation EPMA electron-probe microanalysis This work was supported by U.S. Department of Agriculture grant 87-CRCR-1-2462.  相似文献   

18.
Zinc-phosphorus interactions have been frequently studied using a diverse number of crop species, but attainment of reproducible Zn deficiencies, especially severe ones, has been hampered by the use of conventional hydroponic solutions wherein contaminating levels of Zn are often near-adequate for normal growth. We utilized novel, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies. Tomato (Lycopersicon esculentum L. cv. Jackpot or Celebrity) seedlings were grown for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 M P, and 0 to 91 M total Zn. Computed free Zn2+ activities were buffered at 10-10.3 M by inclusion of a 100-M excess (above the sum of the micronutrient metal concentrations) of the chelator DTPA. At total added Zn=0, acute Zn deficiency resulted in zero growth after seedling transfer, and plant death prior to termination. Free Zn2+ activities 10-10.6 M resulted in Zn deficiencies ranging from mild to severe, but activities 10-11.2 were required to cause hyperaccumulation of shoot P to potentially toxic levels. Despite severe Zn deficiency (i.e. ca. 20% of control growth), tissue Zn levels were usually much higher than the widely reported critical value of 20 mg kg-1, which may be an artifact of the selection of DTPA for buffering free Zn2+. Across Zn treatments, increasing solution P depressed growth slightly, especially in Celebrity, but corresponding increases in tissue P (indicative of enhanced P toxicity) or decreases in tissue Zn (P-induced Zn deficiency) were not observed. The depressive effect of P was also not explained by reductions in the water-soluble Zn fraction. Within 40 h, restoration of Zn supply did not ameliorate high leakage rates (as measured by K+ efflux) of Zn-deficient roots. Similarly, transfer of Zn-sufficient plants to deficient solutions did not induce leakiness within 40 h. Foliar sprays of ZnSO4 almost completely corrected both Zn deficiency and membrane leakiness of plants grown in low-Zn solutions. Hence, maintenance of root membrane integrity appears to depend on the overall Zn nutritional status of the plant, and not on the presence of certain free Zn2+ levels in the root apoplasm.  相似文献   

19.
Sakya  A.T.  Dell  B.  Huang  L. 《Plant and Soil》2002,246(1):87-95
Although boron (B) deficiency limits the productivity of eucalypts in plantations in many parts of the world, the concentrations of foliar B used in the diagnosis of B deficiency vary greatly among studies. There has been a lack of reliable diagnosis standards for B deficiency in Eucalyptus species. Therefore, the present study investigated the relationship between internal and external B concentrations and growth of Eucalyptus globulus, the main commercial temperate eucalypt species. Seedlings were grown in a B-buffered solution culture (Amberlite IRA 743) from 0.03 to 8.35 M B. Boron deficiency symptoms appeared at day 5 in the nutrient solution containing less than 0.27 M B. The external critical B concentrations, estimated for the growth of shoots and roots, were 1.08 and 0.99 M B, respectively. The internal critical B concentration range in the youngest fully expanded leaf (YFEL) for shoot growth was 12–16 mg B kg–1 dry weight. The internal critical B concentrations estimated in the present study have been successfully used in the diagnosis of B deficiency in E. globulus trees up to three years of age in south-east Asia.  相似文献   

20.
Summary Stomata of paper birch (Betula papyrifera Marsh.) seedlings were more open at high humidity than at low humidity and responded rapidly to changes in vapor pressure deficit. SO2 at 0.2 or 0.8 l l-1 caused partial stomatal closure. Seedlings fumigated with SO2 at 0.2 or 0.5 l l-1 for 30 h or 0.2 l l-1 for 75 h took up more SO2 at high than at low humidity. Differences in pollutant uptake could be explained by stomatal conductance with no need to invoke changes in mesophyll conductance. Betula seedlings were more sensitive to SO2 when fumigated at high humidity, as manifested in more leaf necrosis, increased leaf abscission, and greater growth inhibition compared to seedlings fumigated at low humidity. Amount of injury to leaves increased with rate of SO2 uptake, and inhibition of root growth increased with total SO2 uptake.Abbreviations RH relative humidity - VPD vapor pressure deficit - RGR mean relative growth rate - PPFD photosynthetic photon flux density (400–700 nm) - LDC leaf diffusive conductance - water potential Research supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号