首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.  相似文献   

2.
Tetracycline resistance has been used as the key determinant to monitor resistance genes in natural environments such as rivers, lakes or seawater. The aim of this study was evaluate the frequency of tetA, tetB, tetC, tetD and tetE genes in 52 tetracycline-resistant Enterobacteriacea isolated from river water in the North East Black Sea Region of Turkey. In 52 tetracycline-resistant strains, resistance was mediated by tetA in eight (15.3%) strains, tetB in ten (19.2%) strains and both tetA and tetB in one (1.9%) strain. No tetC, tetD or tetE-mediated resistance was detected. In conclusion, the river water may be considered as a reservoir for the antibiotic resistance genes and the people living in this area may be under risk. To our knowledge, this is the first report for molecular characterization of tetracycline resistance in Enterobacteriaceae of river water origin in Turkey.  相似文献   

3.
Summary A double mutant carrying the ramC and neaA mutations has been constructed by Plvir transductions. This mutant, which carries alterations in ribosomal proteins S5 and S17, behaves like to wildtype bacteria in the following respects: it no longer exhibits the restriction of informational suppressors normally associated with the neaA mutation (altered protein S17); ribosomes from the double mutant show increased intrinsic and neamine-induced misreading in vitro in contrast to ribosomes from the neaA strain, although still less than the misreading level of ribosomes from the ramC (altered protein S5) strain.These properties suggest that ribosomal proteins S5 and S17 act cooperatively to balance translational fidelity.  相似文献   

4.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

5.
Resistance to streptomycin in bacterial cells often results from a mutation in the rpsL gene that encodes the ribosomal protein S12. We found that a particular rpsL mutation (K87E), newly identified in Escherichia coli, causes aberrant protein synthesis activity late in the growth phase. While protein synthesis decreased with age in cells in the wild-type strain, it was sustained at a high level in the mutant, as determined using living cells. This was confirmed using an in vitro protein synthesis system with poly(U) and natural mRNAs (GFP mRNA and CAT mRNA). Other classical rpsL mutations (K42N and K42T) tested did not show such an effect, indicating that this novel characteristic is typical of ribosomes bearing the K87E mutant form of S12, although the K87E mutation conferred the streptomycin resistance and error-restrictive phenotypes also seen with the K42N and K42T mutations. The K87E (but not K42N or K42T) mutant ribosomes exhibited increased stability of the 70S complex in the presence of low concentrations of magnesium. We propose that the aberrant activation of protein synthesis at the late growth phase is caused by the increased stability of the ribosome.Communicated by W. Goebel  相似文献   

6.
Summary 26 cold-resistant revertants of a cold-sensitiveEscherichia coli mutant with an altered ribosomal protein S8 were analyzed for their ribosomal protein pattern by two-dimensional polyacrylamide gel electrophoresis. It was found that 16 of them had acquired the apparent wild-type form of protein S8, one exhibits a more strongly altered S8 than the original mutant and two revertants regained the wild-type form of S8 and, in addition, possess alterations in protein L30. The ribosomes of the residual revertants showed no detectable difference from those of the parental S8 mutant.The mutation leading to the more strongly altered S8 was genetically not separable from the primary S8 mutation; this indicates that both mutations are very close to each other or at the same site. The structural gene for ribosomal protein L30 was mapped relative to two other ribosomal protein genes (for proteins S5 and S8) by the aid of one of the L30 mutants: The relative order obtained is:aroE....rpmD(L30)....rpsE(S5)....rpsH(S8)....THe L30 mutation impairs growth and ribosomal assembly at 20°C and is therefore the first example of a mutant with a defined 50S alteration that has (partial) cold-sensitive ribosome assembly. A double mutant was constructed which possesses both the S8 and the L30 mutations. It was found that the L30 mutation had a slight antagonistic effect on the growth inhibition caused by the S8 mutation. Thus the L30 mutants might have possibly arisen from the original S8 mutants first as S8/L30 double mutants which was followed by the loss of the original S8 lesion.  相似文献   

7.
Summary The effect on translational fidelity of a particular mutation in the gene coding for protein S5 (rpxE) has been investigated. This mutation has the opposite effect of a restrictive strA mutation; in vivo, it relieves the restriction imposed by strA on the suppression of T4 nonsense mutants and results in hypersensitivity to streptomycin; in vitro, the presence of the altered S5 protein in 30S ribosomes results in increased intrinsic misreading. It is concluded that this mutation, ramC319, acts as a ribosomal ambiguity mutation similar to certain mutations of protein S4 (ramA).  相似文献   

8.
Summary Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin.Biochemical analysis shows that the mutants each have two modified 30S ribosomal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).  相似文献   

9.
Summary A mutation causing an alteration in Bacillus subtilis ribosomal protein S4 was mapped by transformation and PBS-1 transduction to a site between aroG and argA, a region of the B. subtilis chromosome not previously demonstrated to contain ribosomal protein genes. The S4 mutation conferred a spore-plus phenotype in a streptomycinresistant, spore-minus genetic background. The altered protein was detectable by polyacrylamide gel electrophoresis of ribosomal proteins of recombinants scored for the sporeplus phenotype in genetic crosses.  相似文献   

10.
A Bacillus subtilis strain with the polynucleotide phosphorylase gene deleted was sensitive for growth in the presence of tetracycline. This strain was used to select for tetracycline-resistant mutants. A point mutation in the tetA(L) promoter and a spontaneously occurring tetA(L) gene copy number mutant were characterized.  相似文献   

11.
Summary Temperature-sensitive (ts) mutations were isolated within a ribosomal protein gene (rpsL) of Escherichia coli K12. Mutations were mapped by complementation using various transducing phages and plasmids carrying the rpsL gene, having either a normal or a defective promoter for the rpsL operon. One of these mutations, ts118, resulted in a mutant S12 protein which behaved differently from the wild-type S12 on CM-cellulose column chromatography. Suppressors of these ts mutations were isolated and characterized; one was found to be a mutation of a nonribosomal protein gene which was closely linked to the RNAase III gene on the E. coli chromosome. This suppressor, which was recessive to its wild-type allele, was cloned into a transducing phage and mapped finely. A series of cold-sensitive mutations, affecting the assembly of ribosomes at 20°C, was isolated within the purL to nadB region of the E. coli chromosome and one group, named rbaA, mapped at the same locus as the suppressor mutation, showing close linkage to the RNAase III gene.  相似文献   

12.
Summary AS9-1 was isolated as a mutation restoring growth in a strain carrying the ribosomal mutation su12-1. The AS9-1 mutation confers a weak antisuppressor effect and a low level of resistance to paromomycin. Two-dimensional polyacrylamide gel electrophoresis patterns of the ribosomal proteins from AS9-1 strains show an altered S9 protein which is more basic than the wild-type form. The presence of the two forms of the protein (wild-type and mutant) in heterocaryotic strains strongly suggests that AS9 is the structural gene for the ribosomal protein S9.  相似文献   

13.
Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter.  相似文献   

14.
Summary The tif-1 mutation has been shown to affect protein synthesis in vitro by increasing translational ambiguity (Ephrati-Elizur, Luther-Davies and Hayes, 1976). It is demonstrated here that some recA mutations confer similar abnormality. By comparing suitable combinations of ribosomes and soluble proteins from recA + and recA cells the defect is shown to be associated with ribosomes. The recA mutation, which suppresses most phenotypic characteristics of the tif-1 mutation (Castellazzi, George and Buttin, 1972(b)) does not suppress the ribosomal abnormality. Sience the closely linked tif-1 and recA mutations lead to the expression of a common property they may be in the same gene.  相似文献   

15.
The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3″) (12.5), aph(6)-1c (12.5%), aph(3″) (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple resistance genes and class 1 integrons in Enterobacteriaceae in dairy farm soil may act as a reservoir of antimicrobial resistance genes and could play a role in the dissemination of these antimicrobial resistance genes to other commensal and indigenous microbial communities in soil. However, additional longer-term studies conducted in more locations are needed to validate this hypothesis.  相似文献   

16.
Tiamulin resistance mutations in Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
Forty "two-step" and 13 "three-step" tiamulin-resistant mutants of Escherichia coli PR11 were isolated and tested for alteration of ribosomal proteins. Mutants with altered ribosomal proteins S10, S19, L3, and L4 were detected. The S19, L3, and L4 mutants were studied in detail. The L3 and L4 mutations did not segregate from the resistance character in transductional crosses and therefore seem to be responsible for the resistance. Extracts of these mutants also exhibited an increased in vitro resistance to tiamulin in the polyuridylic acid and phage R17 RNA-dependent polypeptide synthesis systems, and it was demonstrated that this was a property of the 50S subunit. In the case of the S19 mutant, genetic analysis showed segregation between resistance and the S19 alteration and therefore indicated that mutation of a protein other than S19 was responsible for the resistance phenotype. The isolated ribosomes of the S19, L3, and L4 mutants bound radioactive tiamulin with a considerably reduced strength when compared with those of wild-type cells. The association constants were lower by factors ranging from approximately 20 to 200. When heated in the presence of ammonium chloride, these ribosomes partially regained their avidity for tiamulin.  相似文献   

17.
Summary The conditionally lethal mutation, 286lmis, has been mapped inside the ribosomal protein gene cluster at 72 minutes on the Escherichia coli chromosome and was found to cotransduce at 97% with rpsE (S5). The 2861mis mutation leads to thermosensitivity and impaired assembly in vivo of 30S ribosomal particles at 42°C. The strain carrying the mutation has an altered S17 ribosomal protein; the mutational alteration involves a replacement of serine by phenylalanine in protein S17. Spontaneous reversion to temperature independence can restore the normal assembly in vivo of 30S ribosomal subunits at 42°C and the normal chromatographical sehaviour of the S17 ribosomal protein in vitro. We conclude therefore that the 2861mis mutation affects the structural gene for protein S17 (rpsQ).  相似文献   

18.
Summary Mutants of Bacillus subtilis resistant to various macrolide antibiotics have been isolated and characterized with respect to their sporulation phenotype and the electrophoretic mobility of their ribosomal proteins (r-proteins). Two types of major alterations of r-protein L17, one probably due to a small deletion, are found among mutants exhibiting high-level macrolide resistance. These mutants are all temperature-sensitive for sporulation (Spots). Low-level resistance to some macrolides is found to be associated with minor alterations in r-protein L17. These mutations do not cause a defective sporulation phenotype. All of the macrolide resistance mutations map at the same locus within the Str-Spc region of the B. subtilis chromosome. Hence, changes in a single ribosomal protein can result in different sporulation phenotypes.Mutants resistant to the aminoglycoside antibiotics neomycin and kanamycin have been isolated. Approximately 5% of these are Spots. Representative mutations, neo 162 and kan25, cause concomitant drug resistance and sporulation temperature-sensitivity and map as single-site lesions in the Str-Spc region of the chromosome. Strains bearing neo162 or kan25 are equally cross-resistant to several aminoglycoside antibiotics but show no resistance to streptomycin or spectinomycin. These mutations define a new B. subtilis drug resistance locus at which mutation can cause defective sporulation.  相似文献   

19.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

20.
Aims: To investigate the tetracycline resistance related to tet genes in Aeromonas isolates collected from water and diseased fish in South Korea. Methods and Results: A total of 34 Aeromonas strains were examined for their susceptibility to tetracycline using the minimum inhibitory concentration (MIC) assay, and the genetic determinants (tetA to E) were analysed. Among these strains, the tetA and tetE genes were predominant (tetA was found in six strains, and tetE was found in nine strains), and 15 strains were tetracycline‐resistant by the MIC assay. Additionally, the 8979‐bp plasmid that contains the tetE gene was fully sequenced. Conclusions: These data may be important with regard to the spread and persistence of tetracycline resistance genes in the bacterial populations that are present in aquaculture systems. Significance and Impact of the Study: Interestingly, no isolate has previously been shown to harbour three tet genes that are mediated by efflux systems, but the tetA, tetD and tetE genes were all isolated from one strain, which had the highest MIC value for tetracycline among the strains analysed in this study. We also investigated the full‐length plasmid that encoded the tetE gene from a tetracycline‐resistant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号