首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ectomycorrhizal (ECM) fungi are efficient at taking up phosphorus (P) from mineral sources, such as apatite, which are not easily available to the host trees. Since ECM fungal species differ in P uptake rates, it can be expected that the composition of the ECM fungal community will change upon exposure to apatite, provided that the P transfer is rewarded by more carbon being transferred to the fungal symbiont. Control and apatite-amended mesh bags were buried in pairs in the humus layer of a P-poor Norway spruce forest. The ECM fungal community that colonized these bags was analyzed by DNA extraction, PCR amplification of the internal transcribed spacer (ITS) region, cloning, and random sequencing. Fungal biomass was estimated by ergosterol analysis. No change in the ECM fungal community structure was seen after 5?years of apatite exposure, although the fungal biomass increased threefold upon apatite amendment. Our results indicate that host trees enhance carbon allocation to ECM fungi colonizing P sources in P-poor forests but the lack of change in the composition of the ECM fungal community suggests that P transfer rates were similar among the species. Alternatively, higher P transfer among certain species was not rewarded with higher carbon transfer from the host.  相似文献   

2.
Due to acid rain and nitrogen deposition, there is growing concern that other mineral nutrients, primarily potassium and phosphorus, might limit forest production in boreal forests. Ectomycorrhizal (EcM) fungi are important for the acquisition of potassium and phosphorus by trees. In a field investigation, the effects of poor potassium and phosphorus status of forest trees on the production of EcM mycelium were examined. The production of EcM mycelium was estimated in mesh bags containing sand, which were buried in the soil of forests of different potassium and phosphorus status. Mesh bags with 2% biotite or 1% apatite in sand were also buried to estimate the effect of local sources of nutrients on the production of EcM mycelium. No clear relation could be found between the production of EcM mycelium and nutrient status of the trees. Apatite stimulated the mycelial production, while biotite had no significant effect. EcM root production at the mesh bag surfaces was stimulated by apatite amendment in a forest with poor phosphorus status. The contribution of EcM fungi to apatite weathering was estimated by using rare earth elements (REE) as marker elements. The concentration of REE was 10 times higher in EcM roots, which had grown in contact with the outer surface of apatite-amended mesh bags than in EcM roots grown in contact with the biotite amended or sand-filled mesh bags. In a laboratory study, it was confirmed that REE accumulated in the roots with very low amounts <1 translocated to the shoots. The short-term effect of EcM mycelium on the elemental composition of biotite and apatite was investigated and compared with biotite- and apatite-amended mesh bags buried in trenched soil plots, which were free from EcM fungi. The mesh bags subjected to EcM fungi showed no difference in chemical composition after 17 months in the field. This study suggests that trees respond to phosphorus limitation by increased exploitation of phosphorus-containing minerals by ectomycorrhiza. However, the potential to ameliorate potassium limitation in a similar way appears to be low.  相似文献   

3.
Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0–10, 10–20 and 20–30 cm). The mesh bags were collected after 12 months and we found that 590±70 kg ha–1 year–1 of pure mycelia was produced in spruce stands and 420±160 kg ha–1 year–1 in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20°C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8±0.9×103 kg ha–1 and in the mixed stands 5.8±1.1×103 kg ha–1 down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha–1 in spruce stands and 187 kg N ha–1 in mixed stands. The 13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The 13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The 15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.  相似文献   

4.
Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces surface erosion. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter or P was placed in mesh bags, which were buried around trees of Bauhinia purpurea and Leucaena diversifolia between June 2003 and December 2003 (the wet season) or between December 2003 and June 2004 (the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the 6‐month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the dry season. More microbial biomass was produced during the wet season than during the dry season. Furthermore, organic matter addition enhanced the production of AM fungal and bacterial biomass during both periods. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded sites.  相似文献   

5.
A substantial amount of below-ground carbon (C) is suggested to be associated with fungi, which may significantly affect the soil C balance in forested ecosystems. Ergosterol from in-growth mesh bags and litterbags was used to estimate fungal biomass production and community composition in drained peatland forests with differing fertility. Extramatrical mycelia (EMM) biomass production was generally higher in the nutrient-poor site, increased with deeper water table level and decreased along the length of the recovery time. EMM biomass production was of the same magnitude as in mineral-soil forests. Saprotrophic fungal biomass production was higher in the nutrient-rich site. Both ectomycorrhizal (ECM) and saprotrophic fungal community composition changed according to site fertility and water table level. ECM fungal community composition with different exploration types may explain the differences in fungal biomass production between peatland forests. Melanin-rich Hyaloscypha may indicate decreased turnover of biomass in nutrient-rich young peatland forest. Genera Lactarius and Laccaria may be important in nutrient rich and Piloderma in the nutrient-poor conditions, respectively. Furthermore, Paxillus involutus and Cortinarius sp. may be important generalists in all sites and responsible for EMM biomass production during the first summer months. Saprotrophs showed a functionally more diverse fungal community in the nutrient-rich site.  相似文献   

6.
The dynamics of leaf breakdown in a headwater Colombian stream were evaluated for the native tree species Myrsine guianensis, Cupania latifolia and Nectandra lineatifolia using coarse and fine mesh litter bags. Ten bags of each species (five of each mesh size) were retrieved from the stream at 1, 8, 15, 30, 60 and 120 days. k values ranged from 0.0008 to 0.0058 day–1 and density of macroinvertebrates from 35 to 55 individuals per leaf bag, peaking at day 8. Myrsine guianensis degraded more rapidly than the other species for both coarse and fine mesh bags. This species and Nectandra lineatifolia presented differences in k values between coarse and fine mesh bags, suggesting that macroinvertebrates influenced the decay rate. Despite the low densities of macroinvertebrates found, shredders represented 12.7% of individuals and 50 to 68% of the invertebrate biomass in bags, indicating that this functional feeding group was an important component of fauna associated with litter breakdown in this first order tropical stream. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers and compared to unchambered ambient CO2 during the entire growing season from 1989 through 1991. Dominant species were Andropogon gerardii (C4), A. scoparius (C4), Sorghastrum nutans (C4) and Poa pratensis (C3). Nitrogen and phosphorus concentrations in A. gerardii, P. pratensis and dicotyledonous herbs above ground biomass were estimated by periodic sampling throughout the growing season in 1989 and 1990. In 1991, N and P concentrations in peak biomass were estimated by an early August harvest. N and P concentrations in root production as a function of treatment were estimated using root ingrowth bags that remained in place throughout the growing season. Total N and P in above- and belowground biomass were calculated as products of concentration and peak biomass by species groups. N concentration in A. gerardii and dicotyledonous herb aboveground biomass was lower and total N higher in elevated CO2 plots than in ambient CO2 plots. N concentration in P. pratensis aboveground biomass was lower in elevated CO2 plots than in ambient, but total N did not differ among treatments in 2 out of 3 years. In 1990, N concentration in root ingrowth bag biomass was lower and total N greater in elevated CO2 than in ambient CO2 plots. Root ingrowth bag biomass N concentration did not differ among treatments in 1991, but total N was greater in elevated CO2 plots than in ambient CO2 plots. P concentration was lower under elevated CO2 compared to ambient in 1989, but did not differ substantially among treatments in 1990 or 1991. In all years, total P in aboveground A. gerardii and root ingrowth bag biomass was greater under elevated CO2 than ambient. P concentration and total P in P. pratensis was similar among treatments.  相似文献   

8.
In the pure stand of tropical seagrass,Syringodium isoetifolium, in a small oceanic island, Fiji, grazing effects of the seagrass-associated gammarid,Ampithoe sp., on seagrass and epiphytes were assessed in October 1989, November 1991, November 1992. Density of the gammarid was estimated with two methods, mesh bag method and tuft method. During the three years surveyed the density of the gammarid increased remarkably from 1989 to 1991, with heavy epiphytism. Gut contents of the gammarid were examined. Grazing rates on seagrass leaf with and without epiphytic blue-green algae were measured in a bottle experiment. Litter bag experiments were conducted using different mesh sizes each containing seagrass only and seagrass and gammarids. The seagrass leaf biomass in the litter bag reduced abruptly in both bags. After one week, 78–86% of seagrass biomass disappeared from the bags. Enhancement of decomposition of seagrass leaf by the gammarid grazing was observed. Oxygen consumption and ammonium excretion rates were measured simultaneously in bottle experiments. Carbon budget in the seagrass bed was estimated as follows: 0.9 gC m−2 day−1 in seagrass growth, gammarid grazing was about a half of it and further assimilated a half of it, about 0.1 gC m−2 day−1, and more than half of it become CO2 by respiration. Grazing effects on epiphyte and seagrass growth and production were discussed through the carbon budget and indirect interactions between seagrass, epiphytes and associated gammarids to explain the temporal change of seagrass and epiphyte dynamics.  相似文献   

9.

Background and aims

The partitioning of below ground carbon inputs into roots and extramatrical ectomycorrhizal mycelium (ECM) is crucial for the C cycle in forest soils. Here we studied simultaneously the newly grown biomass of ECM and fine roots in a young Norway spruce stand.

Methods

Ingrowth mesh bags of 16 cm diameter and 12 cm height were placed in the upper soil and left for 12 to 16 months. The 2 mm mesh size allowed the ingrowth of fungal hyphae and roots whereas a 45 μm mesh size allowed only the ingrowth of hyphae. The mesh bags were filled with either EA horizon soil, pure quartz sand or crushed granite. Controls without any ingrowth were established for each substrate by solid tubes (2010) and by 1 μm mesh bags (2011). The fungal biomass in the substrates was estimated by the PLFA 18:2ω6,9 and ECM biomass was calculated as difference between fungal biomass in mesh bags and controls.

Results

The maximum ECM biomass was 438 kg ha?1 in October 2010 in 2 mm mesh bags with EA substrate, and the minimum was close to zero in 2011 in 45 μm mesh bags with quartz sand. The high P content of the crushed granite did not influence the ECM biomass. Fine root biomass reached a maximum of 2,343 kg ha?1 in October 2010 in mesh bags with quartz sand after 16 months exposure. In quartz sand and crushed granite, ECM biomass correlated positively with fine root biomass and the number of root tips, and negatively with specific root length.

Conclusion

The ratio of ECM biomass/fine root biomass in October ranged from 0.1 to 0.3 in quartz sand and crushed granite, but from 0.7 to 1.8 in the EA substrate. The results for the EA substrate suggest a large C flux to ECM under field conditions.  相似文献   

10.

Background and aims

Under chronically elevated N deposition, N retention mainly occur at high soil C-to-N ratio. This may be mediated through soil microbes, such as ectomycorrhizal (EM) fungi, saprotrophic fungi and bacteria, and the aim of this study was to evaluate the relationship between soil microbes and forest floor C-to-N ratios.

Methods

Soil samples from 33 Norway spruce (Picea abies (L.) H. Karst) forests in Denmark and southern Sweden in a forest floor C-to-N ratio gradient (ranging from 14 to 35) were analysed regarding the content of phospholipid fatty acids (PLFAs) to estimate their soil microbial community composition and the relative biomasses of different microbial groups. The relation of EM biomass to total fungal biomass was estimated as the loss of the fungal PLFA 18:2ω6,9 during incubation of soils and the production of EM mycelia was estimated using fungal in-growth mesh bags. The soil microbial variables were correlated to forest floor C-to-N ratio, NO 3 - leaching, soil pH and stand age.

Results

Fungal proportions of microbial biomass, EM to total fungi and EM mycelial production were all positively related to C-to-N ratio, while NO 3 - leaching was negatively related to C-to-N ratio.

Conclusions

Both EM and saprotrophic fungi change with forest floor C-to-N ratios and appear to play a central role in N retention in forest soil. A better understanding of the mechanisms behind this process may be revealed if the role of recalcitrant fungal metabolites for N retention (and soil C sequestration) can be identified. Research along this line deserves further studies.  相似文献   

11.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   

12.
The aim of this study was to investigate how the biomass of extramatrical mycorrhizal mycelia (EMM) is influenced by the addition of different phosphorus (P), potassium (K) and PK fertilizers in peatland forests with variable P and K availability. Four fertilizers were used: apatite, biotite, Rauta-PK? (apatite and ferrosulphate) and a test fertilizer (50% apatite and 50% recycled iron phosphate). Forest plots with four different types of nutrient balance (deficient P and deficient K, deficient P and sufficient K, sufficient P and deficient K, and sufficient P and sufficient K) were studied. The effects on EMM biomass and ectomycorrhizal (EM) biomass in roots were estimated by ergosterol and phospholipid fatty acid (PLFA) analysis using in-growth mesh bags. Nutrients and rare-earth elements in EM roots surrounding the mesh bags were quantified and used as indicators of nutrient transport by the EMM in the mesh bags. The biomass of EMM was enhanced by P, K and PK deficiency of the trees, and EM fungal biomass in the roots was increased by P deficiency. The test fertilizer enhanced EMM biomass in all the plots studied, whereas the other fertilizers did not have any significant effect. No significant interactions between the P and K availability of host and mycelial fertilizer response could be detected. Deficiency of P or K or both in needles did not affect the concentrations of rare-earth elements in the tree roots. Earlier results from laboratory experiments have shown reduced carbon allocation to EM fungi under K deficiency, but this was not the case in these mature forests. Instead, we observed increased EMM biomass in response to both P and K deficiency.  相似文献   

13.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

14.
Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production. We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site. This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has potential consequences for below-ground litter quality and quantity, and for accumulation of organic matter in arctic soils.  相似文献   

15.
In order to understand the impact of habitat changes on ecosystem processes caused by increased populations of elephants, elephant dung decomposition was studied in semi-arid Botswana. Dung decomposition rates were studied with and without the presence of arthropods, using pairs of exposed dung and dung enclosed in nylon-mesh bags, respectively. Dung decomposition rates were lower in the absence of arthropods. The rates in the late wet season were higher in the scrubland than in the woodland. In the early dry season, immediately after the wet season, the rates were higher in the woodland than in the scrubland. The difference in decomposition rates between habitats was attributed to microclimatic conditions created by vegetation cover. With regard to fungal succession, Cladosporium cladosporioides and Eurotium brefeldianum occurred only in the late stages of dung decomposition whereas Talaromyces helicus, Cercophora coprophila and Sporormiella minima occurred in all the stages. Although there was no significant difference in Shannon–Weiner fungal species diversity index between habitats, seasons, dung ages and laboratory incubation periods, there were significant differences in fungal community composition between these parameters. Species richness was higher in the late wet season than in the early dry season, indicating the importance of moist conditions for a large diversity of fungal species.  相似文献   

16.
Alan P. Bedford 《Hydrobiologia》2004,529(1-3):187-193
A modified litter bag design and handling procedure were tested to establish whether these reduced the exaggerated fragmentation losses that occur with standard litter bags. The modified design was compared with standard coarse (5 mm) and fine (0.25 mm) mesh litter bags using Phragmitesleaf litter. All were positioned in a section of a reedbed subject to water level management but negligible water flow. Breakdown rates were significantly reduced with the modified design but these were still significantly greater than those in the fine mesh bags. Owing to the extended period, results were influenced by invertebrates colonising the fine mesh bags. The significance of bag design and invertebrate colonisation are discussed.  相似文献   

17.
1. Stream conditions have been evaluated using leaf breakdown, and aquatic hyphomycetes are a diverse group of fungal decomposers which contribute to this process. 2. In field surveys of three pairs of impact‐control stream sites we assessed the effect of eutrophication, mine pollution and modification of riparian vegetation on alder leaf breakdown rate in coarse and fine mesh bags and on mycelial biomass, spore production and species diversity of leaf‐colonizing fungi. 3. In addition, we gathered published information on the response of leaf‐colonizing fungi to these three types of perturbations. We conducted a meta‐analysis of 23 published papers to look for consistent patterns across studies and to determine the relevance of four fungal‐based metrics (microbial breakdown rate, maximum spore production, maximum mycelial biomass and total species richness) to detect stream impairment. 4. In our field surveys, leaf breakdown rates in coarse mesh bags were lower at impact than at paired control sites regardless of perturbation type. A similar trend was observed for leaf breakdown rates in fine mesh bags. Mycelial biomass and spore production were higher in the eutrophied stream than in the control stream. Spore production was depressed in the mine polluted stream, while it was slightly enhanced in the stream affected by forestry. Fungal diversity tended to be lower at impact than at paired control sites, though the mean and cumulative species richness values were often inconsistent. 5. Results of the meta‐analysis confirmed that mine pollution reduces fungal diversity and performance. Eutrophication was not found to affect microbial breakdown rate, maximum spore production and maximum mycelial biomass in a predictable manner because both positive and negative effects were reported in the literature. However, fungal species richness was consistently reduced in eutrophied streams. Modification of riparian vegetation had at most a small stimulating effect on maximum spore production. Among the four fungal‐based metrics included in the meta‐analysis, maximum spore production emerged as the most sensitive indicator of human impact on streams. 6. Taken together, our findings indicate that human activities can affect the diversity and functions of aquatic hyphomycetes in streams. We also show that leaf breakdown rate and simple fungal‐based metrics, such as spore production, are relevant to assess stream condition.  相似文献   

18.
Decomposition of Juglans regia leaves was studied in fine and coarse mesh bags in a permanent mountain stream in Oman. A rapid initial mass loss, attributed to leaching, was followed by a more gradual decline. Daily exponential decay rates (k) calculated over 32 days were 0.011 (fine mesh litter bags) and 0.014 (coarse mesh litter bags). The difference between bag types was not significant, suggesting limited impact of leaf‐shredding invertebrates. Ergosterol levels on leaves from fine mesh bags peaked at 0.3 mg g1 AFDM after 16 days of stream exposure. During the experimental period, which followed the annual leaf fall, the concentration of aquatic hyphomycete conidia in the stream varied between 82 and 1362 l–1. Based on the morphology of conidia found in the water column or released from leaves, we identified 14 species of aquatic hyphomycetes. Tetracladium apiense was the most common taxon (62.2% of conidia in water column during the field experiment). Three other Tetracladium species contributed another 8%. Plating out leaf particles yielded common epiphytic taxa such as Alternaria sp., Aureobasidium pullulans and Phoma sp. The measured metrics of leaf decay in this desert stream fall within the range of values observed in temperate and tropical streams, with clear evidence for an early leaching phase, and no evidence of a strong impact of leaf shredders. The community of aquatic hyphomycetes appears impoverished. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this study we assessed the effect of current velocity and shredder presence, manipulated in artificial channels, on the structure of the fungal assemblage colonizing alder (Alnus glutinosa (L.) Gaertner ) leaves incubated in coarse and fine mesh bags. Fungal sporulation rates, cumulative conidial production and number of species of aquatic hyphomycetes were higher in leaves exposed to high rather than to low current velocity. The opposite was observed regarding Simpson's index (D) on the fungal assemblage. Some species of aquatic hyphomycetes were consistently stimulated in high current channels. No effect of shredders or of mesh type was observed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
H. Setälä 《Oecologia》2000,125(1):109-118
Mycorrhizal plants are commonly believed to direct much more of their photosynthates into the soil than non-mycorrhizal plants. As the growth of most organisms of the detrital food web is limited by energy, the flow of C through mycorrhizal plants into the below-ground milieu is widely assumed to nourish a variety of decomposer organisms in soils. In the current experiment, I explored whether some representatives of soil mesofauna, either fungivores or microbi-detritivores, derive benefit from the presence of ectomycorrhizal (EM) fungi growing on the roots of Scots pine (Pinus sylvestris). I also investigated whether the role of soil mesofauna in affecting pine growth depends on the presence of EM fungi in the pine rhizosphere. The study was established in microcosms with a mixture of raw humus and sand. The soil was defaunated, reinoculated with 10 species of soil bacteria and 11 species of saprophytic soil fungi, and pine seedlings, either infected or non-infected with four taxa of EM fungi, were planted in the microcosms. Five treatments with different food web configurations were established: (1) saprophytic microbes alone, (2) as (1) but with the omnivorous enchytraeid species Cognettia sphagnetorum present, (3) as (1) but with Collembola (Hypogastrura assimilis), (4) as (1) but with four species of oribatid mites (Acari) involved, and (5) as 1) but with C. sphagnetorum, H. assimilis and the Acari. The microcosms were incubated in a climate chamber with varying temperature and illumination regimes for two growing periods for the pine. After 60 weeks, pine biomass production was significantly greater in the mycorrhizal systems, the total biomass being 1.43 times higher in the presence than absence of EM fungi. Similarly, almost ten times more fungal biomass was detected on pine roots growing in the mycorrhizal than in the non-mycorrhizal systems. The presence of EM fungi was also associated with significantly lowered pH and percent organic matter of the soil. Despite the clearly larger biomass of both the pines and the fungi on the pine roots, neither the numbers nor biomasses of the mesofauna differed significantly between the EM and non-EM systems. The presence of Collembola and C. sphagnetorum had a positive influence on pine growth, particularly in the absence of EM fungi, whereas oribatid mites had no effects on pine growth. The complexity of the mesofaunal community was not related to the biomass production of the pines in a straightforward manner; for example, the complex systems with each faunal group present did not produce more pine biomass than the simple systems where C. sphagnetorum existed alone. The results of this experiment suggest that the short-term role of EM fungi in fuelling the detrital food web is less significant than generally considered, but that their role as active decomposers and/or stimulators of the activity of saprophytic microbes can be more important than is often believed. Received: 22 December 1999 / Accepted: 14 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号