首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have localized transforming growth factor-beta (TGF-beta) in many cells and tissues with immunohistochemical methods, using two polyclonal antisera raised to different synthetic preparations of a peptide corresponding to the amino-terminal 30 amino acids of TGF-beta 1. These two antibodies give distinct staining patterns; the staining by anti-CC(1-30) is intracellular. This differential staining pattern is consistently observed in several systems, including cultured tumor cells; mouse embryonic, neonatal, and adult tissues; bovine fibropapillomas; and human colon carcinomas. The extracellular staining by anti-CC(1-30) partially resembles that seen with an antibody to fibronectin, suggesting that extracellular TGF-beta may be bound to matrix proteins. The intracellular staining by anti-LC(1-30) is similar to that seen with two other antibodies raised to peptides corresponding to either amino acids 266-278 of the TGF-beta 1 precursor sequence or to amino acids 50-75 of mature TGF-beta 1, suggesting that anti-LC(1-30) stains sites of TGF-beta synthesis. Results from RIA and ELISAs indicate that anti-LC(1-30) and anti-CC(1-30) recognize different epitopes of this peptide and of TGF-beta 1 itself.  相似文献   

2.
Full-length cDNAs for the transforming growth factor-beta (TGF-beta) type III receptors were isolated from porcine uterus and human placenta cDNA libraries. The human TGF-beta type III receptor coding region encodes a protein of 849 amino acids with a single transmembrane domain and a short stretch of the intracellular domain. Potential glycosaminoglycan attachment sites were found in the extracellular domain. The overall amino acid sequence identities with those of the porcine and rat TGF-beta type III receptors were 83% and 81%, respectively. A high degree of sequence conservation was observed in the transmembrane and intracellular domains, which also have sequence similarity with human endoglin. In addition, two portions with 29 and 52 amino acids in the extracellular domain were found to be substantially similar with human endoglin.  相似文献   

3.
A polyclonal antibody (CL-B1/29) raised against a synthetic peptide with an amino acid sequence identical to the first 29 N-terminal residues of bovine bone-derived transforming growth factor-beta 2 (TGF-beta 2) was characterized and used for immunolocalization of TGF-beta 2 in adult mice. Reduced staining of immunoblots and tissue after absorption of the antiserum with the immunizing peptide or with TGF-beta 2 but not with purified TGF-beta 1 demonstrated that the reagent is specific for TGF-beta 2, with little or no crossreactivity with TGF-beta 1. The immunolocalization of TGF-beta 2 was investigated in formalin-fixed, paraffin-embedded cultured cells and murine tissue. Specimens pre-digested with testicular hyaluronidase demonstrated immunostaining predominantly of extracellular connective tissue matrix, whereas specimens pre-digested with pronase E demonstrated primarily cytoplasmic staining. Immunoreactivity was widely distributed in connective tissue, muscle, adsorptive and secretory epithelia, especially of endocrine tissue, and neural tissue of adult mice.  相似文献   

4.
Immunohistochemistry and in situ and Northern blot hybridization were employed to determine temporal and spatial expression of transforming growth factor-beta 1 (TGF beta 1) in the mouse uterus during the periimplantation period. The polyclonal antisera anti-LC-(1-30) and anti-CC-(1-30), raised against two different preparations of a peptide corresponding to the amino-terminal 30 amino acids of TGF beta 1, were used for histochemical analyses because of their distinct staining patterns. Anti-LC shows intracellular staining, while staining by anti-CC is primarily extracellular. The colocalization of intracellular staining by anti-LC with in situ hybridization of TGF beta 1 mRNA in the luminal and glandular epithelia on days 1-4 of pregnancy (day 1 = vaginal plug) indicates that the epithelial cells are the primary sites of TGF beta 1 synthesis during the preimplantation period. On the other hand, staining of the extracellular matrix of the stroma by anti-CC during this period suggests an active accumulation of TGF-beta 1 that is synthesized in and secreted from the epithelia. While intracellular staining and accumulation of TGF-beta 1 mRNA in the epithelia were clearly evident on days 1-4, the extracellular staining showed temporal fluctuations. The clear extracellular staining of the stroma that was observed on day 1 was absent on day 2; moderate staining was again visualized in the stroma on day 3 and was markedly increased on day 4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the angiogenesis during the development of placenta, but the intracellular signaling mechanism by which TGF-beta1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to TGF-beta1 stimulated the secretion of the VEGF gene encoding vascular endothelial growth factor, which is a key factor in angiogenesis. Meanwhile, treatment of normal human cytotrophoblast cells with TGF-beta1-induced expression of HIF-1a, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. Our data indicated that TGF-beta1 induced extracellular signal- regulated kinase (ERK) 1/2 phosphorylation in normal human cytotrophoblast cells. Moreover, treating cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited TGF-beta1 stimulation of VEGF secretion and HIF-1a protein expression. These data indicated that in normal human cytotrophoblast cells, TGF-beta1 induced HIF-1a-mediated VEGF secretion, and TGF-beta1-stimulated-ERK1/2 activation may be involved in this process.  相似文献   

6.
Using a cytochemical approach, we examined the role of tissue transglutaminase (tTgase, Type II) in the incorporation of latent TGF-beta binding protein-1 (LTBP-1) in the extracellular matrix of Swiss 3T3 fibroblasts in which tTgase expression can be modulated through a tetracycline-controlled promoter. Increased tTgase expression led to an increased rate of LTBP-1 deposition in the matrix, which was accompanied by an increased pool of deoxycholate-insoluble fibronectin. Matrix deposition of LTBP-1 could also be reduced by the competitive amine substrate putrescine. Immunolocalization at the fluorescence and electron microscopic level showed that extracellular tTgase is located at the basal and apical surfaces of cells and at cell-cell contacts, and that LTBP-1 is co-distributed with cell surface tTgase, suggesting an early contribution of tTgase to the binding of LTBP-1 to matrix proteins. LTPB-1 was also found to co-localize with both intracellular and extracellular fibronectin, and increased immunoreactivity for LTBP-1 and fibronectin was found in large molecular weight polymers in the deoxycholate-insoluble matrix of fibroblasts overexpressing tTgase. We conclude that regulation of tTgase expression is important for controlling matrix storage of latent TGF-beta1 complexes and that fibronectin may be one extracellular component to which LTBP-1 is crosslinked when LTBP-1 and tTgase interact at the cell surface. (J Histochem Cytochem 47:1417-1432, 1999)  相似文献   

7.
Transforming growth factor beta (TGF-beta) enhances the cell surface binding of 125I-fibronectin by cultured human fibroblasts. The effect of TGF-beta on cell surface binding was maximal after 2 h of exposure to TFG-beta and did not require epidermal growth factor or protein synthesis. The enhancement was dose dependent and was found with the 125I-labeled 70-kilodalton amino-terminal fragment of fibronectin as well as with 125I-fibronectin. Treatment of cultures with TGF-beta for 6 h resulted in a threefold increase in the estimated number of fibronectin binding sites. The increase in number of binding sites was accompanied by an increased accumulation of labeled fibronectin in detergent-insoluble extracellular matrix. The effect of TGF-beta was biphasic; after 6 h of exposure, less labeled fibronectin bound to treated cultures than to control cultures. Exposure of cells to TGF-beta for greater than 6 h caused a two- to threefold increase in the accumulation of cellular fibronectin in culture medium as detected by a quantitative enzyme-linked immunosorbent assay. The second phase of the biphasic effect and the increase in soluble cellular fibronectin were blocked by cycloheximide. Immunofluorescence staining of fibroblast cultures with antifibronectin revealed that TGF-beta caused a striking increase in fibronectin fibrils. The 70-kilodalton amino-terminal fragment of fibronectin, which blocks incorporation of fibronectin into extracellular matrix, blocked anchorage-independent growth of NRK-49F cells in the presence of epidermal growth factor. Our results show that an increase in the binding and rate of assembly of exogenous fibronectin is an early event preceding the increase in expression of extracellular matrix proteins. Such an early increase in cell surface binding of exogenous fibronectin may be a mechanism whereby TGF-beta can modify extracellular matrix characteristics rapidly after tissue injury or during embryonic morphogenesis.  相似文献   

8.
9.
Transforming growth factor-beta (TGF-beta) plays a pivotal role in the extracellular matrix accumulation observed in chronic progressive tissue fibrosis, but the intracellular signaling mechanism by which TGF-beta stimulates this process remains poorly understood. We examined whether mitogen-activated protein kinase (MAPK) routes were involved in TGF-beta1-induced collagen expression in L(6)E(9) myoblasts. TGF-beta1 induced p38 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation whereas no effect on Jun N-terminal kinase phosphorylation was observed. Biochemical blockade of p38 but not of the ERK MAPK pathway abolished TGF-beta1-induced alpha(2)(I) collagen mRNA expression and accumulation. These data indicate that TGF-beta1-induced p38 activation is involved in TGF-beta1-stimulated collagen synthesis.  相似文献   

10.
11.
12.
Integrins are crucial for the ability of cells to sense mechanical perturbations and to transmit intracellular stress to their environment. We here review the more recently discovered role of integrins in activating the pleiotrophic cytokine transforming growth factor beta 1 (TGF-beta1). TGF-beta1 controls tissue homeostasis in embryonic and normal adult tissues and contributes to the development of fibrosis, cancer, autoimmune and vascular diseases when being mis-regulated. In most of these conditions, active TGF-beta1 is generated by dissociation from a large latent protein complex that sequesters latent TGF-beta1 in the extracellular matrix (ECM). Two main models are proposed how integrins contribute to latent TGF-beta1 activation: (1) In a protease-dependent mechanism, integrins alphavbeta8 and alphavbeta3 are suggested to simultaneously bind the latent TGF-beta1 complex and proteinases. This close vicinity at the cell surface improves enzymatic cleavage of the latent complex to release active TGF-beta1. (2) Integrins alphavbeta3, alphavbeta5, alphavbeta6, and alphavbeta8 appear to change the conformation of the latent TGF-beta1 complex by transmitting cell traction forces. This action requires association of the latent complex with a mechanically resistant ECM and is independent from proteolysis. Understanding that different integrins use different mechanisms to activate latent TGF-beta1 opens new possibilities to develop cell-specific therapeutic strategies for TGF-beta1-induced pathologies.  相似文献   

13.
The localization of TGF-beta 1, -beta 2 and -beta 3 was studied in the growth plate, epiphysis and metaphysis of the tibiotarsus of three-week-old chicks. The different TGF-beta isoforms were localized to hypertrophic chondrocytes, chondroclasts, osteoblasts and osteoclasts using immunohistochemical staining analysis with specific TGF-beta antibodies. TGF-betas in osteoclasts and chondroclasts were restricted to those cells located on the respective matrices. TGF-beta 3 localization was mainly cytoplasmic in the transitional (early hypertrophic) chondrocytes, but nuclear staining was also detected in some proliferating chondrocytes. The cell-specific localization of these TGF-beta isoforms supports the hypothesis that TGF-beta has a role in the coupling of new bone formation to bone and cartilage matrix resorption during osteochondral development and suggests that TGF-beta may be a marker of chondrocyte differentiation. TGF-beta localization preceded a marked increase in type II collagen mRNA expression in transitional chondrocytes, suggesting a role for TGF-beta in the induction of synthesis of extracellular matrix.  相似文献   

14.
TGF-beta and fibrosis   总被引:18,自引:0,他引:18  
Transforming growth factor-beta (TGF-beta) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-beta is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-beta is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-beta. In general, the release and activation of TGF-beta stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-beta contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-beta contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1-3]. In the following chapter, we will discuss the role of TGF-beta in tissue fibrosis, with particular emphasis on renal fibrosis.  相似文献   

15.
We examined the localization of transforming growth factor (TGF)-beta in first-trimester and term human decidua and chorionic villi and explored the role of this factor on the proliferation and differentiation of cultured trophoblast cells. Two antibodies, 1D11.16.8, a mouse monoclonal neutralizing antibody capable of recognizing both TGF-beta 1 and TGF-beta 2 and CL-B1/29, a rabbit polyclonal antibody capable of recognizing TGF-beta 2, were used to immunolocalize TGF-beta in fixed, paraffin-embedded, or fixed, frozen sections of placenta and decidua, providing similar results. Intense labeling was observed in the extracellular matrix (ECM) of the first-trimester decidua and cytoplasm of term decidual cells. Syncytiotrophoblast cell cytoplasm as well as the ECM in the core of the chorionic villi of both first-trimester and term placentas exhibited a moderate degree of labeling. Strong cytoplasmic labeling was observed in the cytotrophoblastic shell of the term placenta. To examine the role of TGF-beta on trophoblast proliferation and differentiation, early passage cultures of first-trimester and primary cultures of term trophoblast cells were established and characterized on the basis of numerous immunocytochemical and functional markers. These cells expressed cytokeratin, placental alkaline phosphatase, urokinase-type plasminogen activator, and pregnancy-specific beta glycoprotein, but not factor VIII or 63D3; they also produced hCG and collagenase type IV. Exposure of first-trimester trophoblast cultures to TGF-beta 1 significantly inhibited proliferation in a dose-dependent manner. An antiproliferative effect was also noted in the presence of TGF-beta 2. These effects were abrogated in the presence of the neutralizing anti-TGF-beta antibody (1D11.16.8) in a concentration-dependent manner. In a 3-day culture, exogenous TGF-beta 1 stimulated formation of multinucleated cells by the first trimester as well as term trophoblast cells. Addition of neutralizing anti-TGF-beta antibody to first-trimester trophoblast cells stimulated proliferation beyond control levels in a 24-h culture and reduced formation of multinucleated cells in a 3-day culture, indicating the presence of endogenous TGF-beta activity. These results indicate that TGF-beta produced at the human fetal-maternal interface plays a major regulatory role in the proliferation and differentiation of the trophoblast.  相似文献   

16.
Polyclonal antibodies directed against (i) rodent lung beta 2-adrenergic receptor, (ii) a synthetic fragment of an extracellular domain of the receptor, and (iii) human placenta G-protein beta-subunits, were used to localize these antigens in situ in intact and permeabilized human epidermoid carcinoma A431 cells. Antibodies directed against beta 2-adrenergic receptors showed a punctate immunofluorescence staining throughout the cell surface of fixed intact cells. Punctate staining was also observed in clones of Chinese hamster ovary cells transfected with an expression vector harbouring the gene for the hamster beta 2-adrenergic receptor. The immunofluorescence observed with anti-receptor antibodies paralleled the level of receptor expression. In contrast, the beta-subunits common to G-proteins were not stained in fixed intact cells, presumably reflecting their intracellular localization. In detergent-permeabilized fixed cells, strong punctate staining of G beta-subunits was observed throughout the cytoplasm. This is the first indirect immunofluorescence localization of beta-adrenergic receptors and G-proteins. Punctate immunofluorescence staining suggests that both antigens are distributed in clusters.  相似文献   

17.
We examined the effects of TGF-beta 1 on induction of several activated macrophage antimicrobial activities against the protozoan parasite Leishmania, and on induction of tumoricidal activity against the fibrosarcoma tumor target 1023. TGF-beta by itself did not affect the viability of either the intracellular or extracellular target in concentrations up to 200 ng/ml. As little as 1 ng/ml TGF-beta, however, suppressed more than 70% of the intracellular killing activity of macrophages treated with lymphokines. In contrast, more than 100 ng/ml TGF-beta was required to suppress intracellular killing by cells activated with an equivalent amount of recombinant IFN-gamma. Addition of TGF-beta for up to 30 min after exposure to activation factors significantly reduced macrophage killing of intracellular parasites. Pretreatment of macrophages with TGF-beta was even more effective: treatment of cells with TGF-beta for 4 h before addition of activation factors abolished all macrophage intracellular killing activity. Regardless of treatment sequence, however, TGF-beta had absolutely no effect, at any concentration tested, on activated macrophage resistance to infection induced by lymphokines or by the cooperative interaction of IFN-gamma and IL-4. Effects of TGF-beta on tumoricidal activity of activated macrophages was intermediate to that of its effects on intracellular killing or resistance to infection. Lymphokine-induced tumor cytotoxicity was marginally (25%) affected by TGF-beta; 200 ng/ml was able to suppress IFN-gamma-induced tumoricidal activity by 40%. Thus, TGF-beta dramatically suppressed certain activated macrophage cytotoxic effector reactions, but was only partially or not at all effective against others, even when the same activation agent (IFN-gamma) was used. The biochemical target for TGF-beta suppressive activity in these reactions may be the pathway for nitric oxide production from L-arginine, because TGF-beta also inhibited the generation of nitric oxide by cytokine-activated macrophages.  相似文献   

18.
19.
Transforming growth factor-beta1 (TGF-beta1) action is known to be initiated by its binding to multiple cell surface receptors containing serine/threonine kinase domains that act to stimulate a cascade of signaling events in a variety of cell types. We have previously shown that TGF-beta1 and BMP-2 treatment of primary human osteoblasts (HOBs) enhances cell-substrate adhesion. In this report, we demonstrate that TGF-beta1 elicits a rapid, transient, and oscillatory rise in the intracellular Ca(2+) concentration, [Ca(2+)](i), that is necessary for enhancement of cell adhesion in HOBs but does not alter the phosphorylation state of Smad proteins. This rise in [Ca(2+)](i) in HOB is not observed in the absence of extracellular calcium or when the cells are treated with the L-type Ca(2+) channel blocker, nifedipine, but is stimulated upon treatment with the L-type Ca(2+) channel agonist, Bay K 8644, or under high K(+) conditions. The rise in [Ca(2+)](i) is severely attenuated after treatment of the cells with thapsigargin, a selective endoplasmic reticulum Ca(2+) pump inhibitor. TGF-beta1 enhancement of HOB adhesion to tissue culture polystyrene is also inhibited in cells treated with nifedipine. These data suggest that intracellular Ca(2+) signaling is an important second messenger of the TGF-beta1 signal transduction pathway in osteoblast function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号