首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Growth of Streptomyces clavuligerus NP1 in the presence of methanol or ethanol resulted in a marked increase in production of cephalosporin(s) from penicillin G by resting cells. The mycelium produced in alcohol-supplemented medium was fragmented and dispersed as compared with growth in control medium. HPLC analysis showed that at least two products were present in the biotransformation supernatant fluid after 1 h incubation. One of them has been identified as deacetoxycephalosporin G (DAOG). Received: 9 December 1998 / Received revision: 29 March 1999 / Accepted: 16 April 1999  相似文献   

2.
Deacetoxycephalosporin C synthase (expandase) from Streptomyces clavuligerus, encoded by cefE, is an important industrial enzyme for the production of 7-aminodeacetoxycephalosporanic acid from penicillin G. To improve the substrate specificity for penicillin G, eight cefE-homologous genes were directly evolved by using the DNA shuffling technique. After the first round of shuffling and screening, using an Escherichia coli ESS bioassay, four chimeras with higher activity were subjected to a second round. Subsequently, 20 clones were found with significantly enhanced activity. The kinetic parameters of two isolates that lack substrate inhibition showed 8.5- and 118-fold increases in the kcat/Km ratio compared to the S. clavuligerus expandase. The evolved enzyme with the 118-fold increase is the most active obtained to date anywhere. Our shuffling results also indicate the remarkable plasticity of the expandase, suggesting that more-active chimeras might be achievable with further rounds.  相似文献   

3.
Based on multiple sequence alignment of different deacetoxycephalosporin C synthase (DAOCSs) and the crystal structure of Streptomyces clavuligerus DAOCS, 2-oxoglutarate, and penicillin G triple complex, ten residues (Y184, V245, S261, C37, T42, V51, S59, A61, Q126, and T213) not directly involved in substrate recognition were selected as mutational targets. Twenty one mutants were generated and characterized, and five (Q126M, T213V, S261M, S261A, and Y184A) showed improved activity toward penicillin G, with 1.45- to 4.50-fold increment in the k cat/K m. Q126, T213, and S261 are identified for the first time, as sites with significant effect on enzyme activity.  相似文献   

4.
Summary The cefD and cefE genes of Nocardia lactamdurans, which encode isopenicillin N epimerase and deacetoxycephalosporin C synthase respectively, have been located 0.63 kb upstream from the lysine-6-amino-transferase (lat) gene. cefD contains an open reading frame (ORF) of 1197 nucleotides (nt) encoding a protein of 398 amino acids with a Mr of 43 622. The deduced amino acid sequence exhibits 62.2% identity to the cefD gene product of Streptomyces clavuligerus. The sequence SXHKXL in isopenicillin N epimerase resembles the consensus sequence for pyridoxal phosphate binding found in several amino acid decarboxylases from Enterobacteria. cefE contains an ORF of 945 nt encoding a protein of 314 amino acids with a Mr of 34532, which is similar to the deacetoxycephalosporin C synthase of S. clavuligerus. Expression of both genes, cefD and cefE, in S. lividans transformants, results in deacetoxycephalosporin C synthase and isopenicillin N epimerase activities that are 10–12 times higher than those in N. lactamdurans. The cefD and cefE genes of N. lactamdurans are closely linked but the overall organization of the cephamycin gene cluster differs in N. lactamdurans and S. clavuligerus.  相似文献   

5.
The bioconversion of penicillin G to deacetoxycephalosporin G (DAOG) using resting cells of Streptomyces clavuligerus could be a very valuable step in the economical production of semisynthetic cephalosporin antibiotics. The extent of the reaction, however, is very low due to inactivation of the ring expansion enzyme deacetoxycephalosporin C synthetase ("expandase") by reaction components. We show that elimination of agitation during the reaction lowers the rate but increases the amount of DAOG produced, presumably because the inactivation requires high levels of oxygen. Many additives to the medium were examined for their effect on the reaction. Clearly, the most effective compound was the organic solvent, decane.  相似文献   

6.
The case studies focus on two types of enzyme applications for pharmaceutical development. Demethylmacrocin O-methyltransferase, macrocin O-methyltransferase (both putatively rate-limiting) and tylosin reductase were purified from Streptomyces fradiae, characterized and the genes manipulated for increasing tylosin biosynthesis in S. fradiae. The rate-limiting enzyme, deacetoxycephalosporin C (DAOC) synthase/hydroxylase (expandase/ hydroxylase), was purified from Cephalosporium acremonium, its gene over-expressed, and cephalosporin C biosynthesis improved in C. acremonium. Also, heterologous expression of penicillin N epimerase and DAOC synthase (expandase) genes of Streptomyces clavuligerus in Penicillium chrysogenum permitted DAOC production in the fungal strain. Second, serine hydroxymethyltransferase of Escherichia coli and phthalyl amidase of Xanthobacter agilis were employed in chemo-enzymatic synthesis of carbacephem. Similarly, echinocandin B deacylase of Actinoplanes utahensis was used in the second-type synthesis of the ECB antifungal agent. Received 07 March 1997/ Accepted in revised form 15 June 1997  相似文献   

7.
The L-lysine ɛ-aminotransferase (LAT) of Streptomyces clavuligerus was partially purified and characterized. The 51.3-kDa enzyme exhibited optimal activity at pH 7.0–7.5 and 30°C. It catalyzed transfer of the terminal amino group of L-lysine or L-ornithine to α -ketoglutarate. Oxalacetate and pyruvate were also used as acceptors of the amino group but with very low efficiency. Increasing ammonium concentrations added to chemically-defined medium MM enhanced the formation of LAT and decreased production of cephalosporins by S. clavuligerus. In cultures grown in the absence of lysine, greater enhancement of LAT formation by ammonium and less repression of cephalosporin biosynthesis were observed. In the chemically-defined GSPG medium, ammonium ions decreased cephalosporin production without showing an effect on LAT formation. Received 20 August 1996/ Accepted in revised form 15 November 1996  相似文献   

8.
AIMS: To improve the resting cell bioconversion of penicillin G to deacetoxycephalosporin G (DAOG) by elimination of an oxidizing intermediate which inactivates the enzyme during the reaction. METHODS AND RESULTS: Resting cells of Streptomyces clavuligerus strain NP1 were incubated with penicillin G, required co-factors and decane in the presence of catalase or superoxide dismutase, and production of DAOG was measured. Catalase stimulated the bioconversion but superoxide dismutase did not. CONCLUSIONS: Production of hydrogen peroxide during the ring expansion reaction is at least partially responsible for enzyme inactivation. SIGNIFICANCE AND IMPACT OF THE STUDY: Catalase addition improves the bioconversion and will contribute to the eventual replacement of the current multi-step, expensive and environmentally-unfriendly chemical ring expansion by a biological route.  相似文献   

9.
A bacterial strain (MM) utilizing methanol as the only carbon and energy source was isolated from corn mint rhizoplane. The cells of the strain were gram-negative colorless motile rods. Spores and prosthecae were not formed, reproduced by binary fission, and did not require vitamins and growth factors. The organism was strictly aerobic, urease-, oxidase-, and catalase-positive. Used the KDPG variant of the ribulose monophosphate pathway. Possessed NAD+ dependent 6-phosphogluconate dehydrogenase activity and enzymes of the glutamate cycle. The activities of α-ketoglutarate dehydrogenase and of the glyoxylate bypass enzymes (isocitrate lyase and malate synthase) were absent. Palmitic (C16:0) and palmitoleic (C16:1) acids were predominant in the cell fatty-acid composition. The dominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. The dominant ubiquinone was Q8. The strain formed indole from tryptophan. The DNA G + C content was 54.5 mol % (T m). According to the data of the 16S rRNA gene sequencing, strain MM showed high similarity (98–99%) to Methylovorus glucosotrophus VKM B-1745T and Methylovorus mays VKM B-2221T, but the level of DNA-DNA homology with these cultures was only 40 and 58%, respectively. The strain was classified as a new species, Methylovorus menthalis sp. nov. (VKM B-2663T).  相似文献   

10.
The cells of Acetobacter xylinum decreased phosphate concentration in the medium from 5 to 2.5 or 0.3 mM during incubation in the presence of Mg2+ and glucose, or Mg2+ and casamino acids, respectively. The prevalence of orthophosphate or polyphosphate in the biomass of A. xylinum depends on the medium composition. Under phosphate uptake in the presence of glucose, the content of orthophosphate in the biomass changed little, while that of polyphosphate increased fourfold. At incubation with casamino acids, the content of orthophosphate increased 15 times, while that of polyphosphate increased only 2.5 times. Some part of orthophosphate in this case seems to be bound with the cell surface. The polyphosphate chain length in the cells of A. xylinim increases under phosphate uptake. This increase is more noticeable in the presence of glucose. Casamino acids can be replaced by α-ketoglutaric acid in combination with (NH4)2SO4, or arginine, or glutamine, the catabolism of which results in formation of NH4 + and α-ketoglutarate.  相似文献   

11.
12.
We evaluated the effects of the main auxin phytohormone, indole-3-acetic acid (IAA), on the central metabolism of Sinorhizobium meliloti 1021. We either treated S. meliloti 1021 wild-type cells with 0.5 mM IAA, 1021+, or use a derivative, RD64, of the same strain harboring an additional pathway for IAA biosynthesis (converting tryptophan into IAA via indoleacetamide). We assayed the activity of tricarboxylic acid cycle (TCA) key enzymes and found that activity of citrate synthase and α-ketoglutarate dehydrogenase were increased in both 1021+ and RD64 as compared to the wild-type strain. We also showed that the intracellular acetyl-CoA content was enhanced in both RD64 and 1021+ strains when compared to the control strain. The activity of key enzymes, utilizing acetyl-CoA for poly-β-hydroxybutyrate (PHB) biosynthesis, was also induced. The PHB level measured in these cells were significantly higher than that found in control cells. Moreover, 4-week-long survival experiments showed that 80% of 1021 cells died, whereas 50% of RD64 cells were viable. Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed an induction of both acetylene reduction activity and stem dry weight production.  相似文献   

13.
Summary When cultivated in chemically defined medium, Streptomyces clavuligerus produces cephamycin C. This biosynthesis is greatly inhibited when the bacteria develop rapidly in batch culture. The decrease in cephamycin C biosynthesis is paralleled by a decrease in expandase biosynthesis. This negative effect can be observed whatever the limiting growth substrate (glycerol, ammonium or phosphate), a phenomenon which was confirmed when S. clavuligerus was cultivated in a chemostat.  相似文献   

14.
The cloning of α-amylase gene ofS. occidentalis and the construction of starch digestible strain of yeast,S. cerevisiae AS. 2. 1364 with ethanol-tolerance and without auxotrophic markers used in fermentation industry were studied. The yeast/E.coli shuttle plasmid YCEp1 partial library ofS. occidentalis DNA was constructed and α-amylase gene was screened in S.cerevisiae by amylolytic activity. Several transformants with amylolysis were obtained and one of the fusion plasmids had an about 5.0 kb inserted DNA fragment, containing the upstream and downstream sequences of α-amylase gene fromS. occidentalis. It was further confirmed by PCR and sequence determination that this 5.0 kb DNA fragment contains the whole coding sequence of α-amylase. The amylolytic test showed that when this transformant was incubated on plate of YPDS medium containing 1 % glum and 1 % starch at 30°C for 48 h starch degradation zones could be visualized by staining with iodine vapour. α-amylase activity of the culture filtratate is 740–780 mU/mL and PAGE shows that the yeast harboring fusion plasmids efficiently secreted α-amylase into the medium, and the amount of the recombinant α-amylase is more than 12% of the total proteins in the culture filtrate. These results showed that α-amylase gene can be highly expressed and efficiently secreted inS. cerevisiae AS. 2.1364, and the promotor and the terminator of α-amylase gene fromS. occidentalis work well inS. cercvisiac AS. 2.1364.  相似文献   

15.
Summary The penicillin G amidase (PGA) activity of a parent strain of E. coli (PCSIR-102) was enhanced by chemical mutagenization with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). After screening and optimization, a penicillinase deficient mutant (MNNG-37) was isolated and found effective for the production of penicillin G amidase as compared to the parent strain of E. coli (PCSIR-102). Penicillin G amidase activity of MNNG-37 appeared during an early stage of growth, whereas PCSIR-102 did not exhibit PGA activity due to the presence of penicillinase enzyme which inhibits the activity of enzyme PGA. However, MNNG-37 gave a three-fold increase in enzyme activity (231 IU mg−1) as compared to PCSIR-102 (77 IU mg−1) in medium containing 0.15 and 0.1% concentrations of phenylacetic acid, respectively which was added after 6 h of cultivation. The difference in K m values of the enzyme produced by parent strain PCSIR-102 (0.26 mM) and mutant strain MNNG-37 (0.20 mM) is significant (1.3-fold increase in K m value) which may show the superiority of the latter in terms of better enzyme properties.  相似文献   

16.
Two non-conventional chemicals, ZnSO4 (10−4 mM) and oxalic acid (4 mM) were tested (alone as well as in combination with seeds bacterized with Pseudomonas syringae strain PUR46 and vermicompost substitution in the potting soil), for their ability to suppress collar rot of chickpea (Cicer arietinum) caused by Sclerotium rolfsii under greenhouse conditions. ZnSO4 and oxalic acid were applied as pre-inoculation foliar spray on chickpea and subsequently challenged with S. rolfsii. Both the chemicals provided significant protection to chickpea compared to control (100% plant mortality) when used alone as well as in combination with PUR46 and vermicompost. However, ZnSO4 was more effective than oxalic acid against S. rolfsii. Amongst the treatments tried, plant mortality was least when ZnSO4 was used in combination with seed bacterization with PUR46 and 25% vermicompost substitution. The findings indicate the utility of integration of the above factors in managing collar rot efficiently.  相似文献   

17.
The effect of structural alterations of the M4 transmembrane segment in the Torpedo californica AChR has shown that substitution of specific residues can be critical to the channel gating (Lasalde et al., 1996). In a previous study we found that phenylalanine and tryptophan substitutions at the αC418 residue in the M4 transmembrane segment of the Torpedo californica AChR significantly altered ion channel function (Lee et al., 1994; Ortiz-Miranda et al., 1997). Cassette mutagenesis was used to mutate the Cys residue at the corresponding C418 position in the α subunit of mouse AChR. A total of nine mutations on the mouse αC418 position were tested, including the αC418A, αC418V, αC418L, αC418S, αC418M, αC418W, αC418H, αC418E and αC418G mutants. All the mutants tested were functional except the αC418G which was not expressed on the surface of the oocyte. The data obtained from macroscopic and single channel currents demonstrate that different types of amino acids can be accommodated at this presumably lipid-exposed position without loss of ion-channel function. As with the Torpedo AChR, the mutation of Cys to Trp dramatically decreased the EC50 for acetylcholine and increased channel open time. The lack of expression of the mouse αC418G suggest that there are some differences in folding, oligomerization and perhaps transport to the surface membrane for this mutant between the Torpedo and the mammalian AChR. Received: 30 December 1998/Revised: 13 April 1999  相似文献   

18.
Site-directed mutagenesis based on predicted modeled structure of pencillin G acylase from Bacillus megaterium (BmPGA) was followed to increase its performance in the kinetically controlled synthesis of cephalexin with high reactant concentrations of 133 mM 7-amino-desaceto-xycephalosporanic acid (7-ADCA) and 267 mM d-phenylglycine amide (D-PGA). We directed changes in amino acid residues to positions close to the active site that were expected to affect the catalytic performance of penicillin acylase: alpha Y144, alpha F145, and beta V24. Alpha F145 was mutated into tyrosine, alanine, and leucine. Alpha Y144 and beta V24 were mutated into arginine and phenylalanine, respectively. The S/H ratios of three mutants, BmPGAα144R, BmPGAβ24F, and BmPGAβ24F+α144R, were up to 1.3–3.0 times higher values. Compared to the wild-type BmPGA, BmPGAβ24F+α144R showed superior potential of the synthetic performance, allowing the accumulation of up to twofold more cephalexin at significantly higher conversion rates. Jingang Wang and Qing Zhang contributed equally to this paper.  相似文献   

19.
In brain mitochondria succinate activates H2O2 release, concentration dependently (starting at 15 μM), and in the presence of NAD dependent substrates (glutamate, pyruvate, β-hydroxybutyrate). We report that TCA cycle metabolites (citrate, isocitrate, α-ketoglutarate, fumarate, malate) individually and quickly inhibit H2O2 release. When they are present together at physiological concentration (0.2, 0.01, 0.15, 0.12, 0.2 mM respectively) they decrease H2O2 production by over 60% at 0.1–0.2 mM succinate. The degree of inhibition depends on the concentration of each metabolite. Acetoacetate is a strong inhibitor of H2O2 release, starting at 10 μM and acting quickly. It potentiates the inhibition induced by TCA cycle metabolites. The action of acetoacetate is partially removed by β-hydroxybutyrate. Removal is minimal at 0.1 mM acetoacetate, and is higher at 0.5 mM acetoacetate. We conclude that several inhibitors of H2O2 release act jointly and concentration dependently to rapidly set the required level of H2O2 generation at each succinate concentration.  相似文献   

20.
Pathophysiological concentrations of branched chain keto-acids (BCKAs), such as those that occur in maple syrup urine disease, inhibit oxygen consumption in liver homogenates and brain slices and the enzymatic activity of α-ketoglutarate- and pyruvate dehydrogenase complexes. Consistent with previous work, studies in isolated rat liver mitochondria indicate that three BCKAs, α-ketoisocaproate (KIC), α-keto-β-methylvalerate (KMV) and α-ketoisovalerate (KIV), preferentially inhibited State 3 respiration supported by α-ketoglutarate relative to succinate or glutamate/malate (KIC, >100-fold; KMV, >10-fold; KIV, >4-fold). KIC was also the most potent inhibitor (Ki,app 13 ± 2 μM). Surprisingly, sub-inhibitory concentrations of KIC and KMV can markedly stimulate State 3 respiration of mitochondria utilizing α-ketoglutarate and glutamate/malate, but not succinate. The data suggest that physiological concentrations of the BCKAs may modulate mitochondrial respiration. Special issue dedicated to John P. Blass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号