首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomics assays hold great promise for unraveling molecular events that underlie human diseases. Effective analysis of clinical samples is essential, but this task is considerably complicated by tissue heterogeneity. Laser capture microdissection (LCM) can be used to selectively isolate target cells from their native tissue environment. However, the small number of cells that is typically procured by LCM severely limits proteome coverage and biomarker discovery potential achievable by conventional proteomics platforms. Herein, we describe the use of nanoLC-FT-ICR MS for analyzing protein digests of 3000 LCM-derived tumor cells from breast carcinoma tissue, corresponding to 300 ng of total protein. A total of 2282 peptides were identified by matching LC-MS data to accurate mass and time (AMT) tag databases that were previously established for human breast (cancer) cell lines. One thousand and three unique proteins were confidently identified with two or more peptides. Based on gene ontology categorization, identified proteins appear to cover a wide variety of biological functions and cellular compartments. This work demonstrates that a substantial number of proteins can be detected and identified from limited number of cells using the AMT tag approach, and opens doors for high-throughput in-depth proteomics analysis of clinical samples.  相似文献   

2.
Discovery of better biomarkers for diagnosis, prognosis and therapy-response prediction is the most critical task of a scientific quest aimed at developing novel, tailormade therapies for patients with cancer. Consequently, a proteome-wide analysis, in addition to genomic studies, is an absolute requirement for a complete functional understanding of tumor biology. Ultra-sensitive, high-performance Fourier-transform ion-cyclotron resonance (FTICR) mass spectrometry (MS) currently holds an important role in fulfilling the demands of biomarker discovery. In this review, we describe the applicability of FTICR-MS for breast cancer proteomics, particularly for the analysis of complex protein mixtures obtained from a limited number of cells typically available from clinical specimens.  相似文献   

3.
The chaperone protein SecB is dedicated to the facilitation of export of proteins from the cytoplasm to the periplasm and outer membrane of Escherichia coli. It functions to bind and deliver precursors of exported proteins to the membrane-associated translocation apparatus before the precursors fold into their native stable structures. The binding to SecB is characterized by a high selectivity for ligands having nonnative structure but a low specificity for consensus in sequence among the ligands. A model previously presented (Randall LL, Hardy SJS, 1995, Trends Biochem Sci 20:65-69) to rationalize the ability of SecB to distinguish between the native and nonnative states of a polypeptide proposes that the SecB tetramer contains two types of subsites for ligand binding: one kind that would interact with extended flexible stretches of polypeptides and the other with hydrophobic regions. Here we have used titration calorimetry, analytical ultracentrifugation, and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to obtain evidence that such distinguishable subsites exist.  相似文献   

4.
The use of nLC-ESI-MS/MS in shotgun proteomics experiments and GeLC-MS/MS analysis is well accepted and routinely available in most proteomics laboratories. However, the same cannot be said for nLC-MALDI MS/MS, which has yet to experience such widespread acceptance, despite the fact that the MALDI technology offers several critical advantages over ESI. As an illustration, in an analysis of moderately complex sample of E. coli proteins, the use MALDI in addition to ESI in GeLC-MS/MS resulted in a 16% average increase in protein identifications, while with more complex samples the number of additional protein identifications increased by an average of 45%. The size of the unique peptides identified by MALDI was, on average, 25% larger than the unique peptides identified by ESI, and they were found to be slightly more hydrophilic. The insensitivity of MALDI to the presence of ionization suppression agents was shown to be a significant advantage, suggesting it be used as a complement to ESI when ion suppression is a possibility. Furthermore, the higher resolution of the TOF/TOF instrument improved the sensitivity, accuracy, and precision of the data over that obtained using only ESI-based iTRAQ experiments using a linear ion trap. Nevertheless, accurate data can be generated with either instrument. These results demonstrate that coupling nanoLC with both ESI and MALDI ionization interfaces improves proteome coverage, reduces the deleterious effects of ionization suppression agents, and improves quantitation, particularly in complex samples.  相似文献   

5.
Here we combined tandem affinity purification with several mass-spectrometry-based approaches to gain more insight into the composition and structure of the yeast nuclear-cytoplasmic exosome protein complex. The yeast exosome fulfills several different functions in RNA metabolism and can be localized in both the cytoplasm and the nucleus. These two exosome complexes differ in protein composition, although they share several constituents. We focused on these differences in composition by selecting a nuclear-specific exosome protein (Rrp6) and a cytoplasmic-specific protein (Ski7) as the tandem-affinity-purification-tagged affinity bait protein. First, we investigated both these purified exosome assemblies by macromolecular mass spectrometry (MS) to determine the stability and mass of the intact protein complexes and to obtain information on composition and core constituents. We used tandem MS on these intact protein complexes to further probe the composition and to obtain insight into the peripheral nature of some of the constituents. Finally, we combine stable isotope labeling with MS to quantitate differences in exosome composition and posttranslational modifications. We identified a few phosphorylation sites that are differentially regulated between the cytoplasmic exosome and the nuclear exosome. From all of these data, we conclude that the yeast nuclear exosome and the cytoplasmic exosome share a common stable core complex, but are decorated with quite a few differing peripheral proteins. We show that the nuclear exosome selectively copurifies with the α/β importin heterodimer, which is known to be involved in the transport of proteins across the nuclear membrane.  相似文献   

6.
倍氯米松(beclomethasone)是一种有效的糖皮质激素,而倍氯米松适配体是对倍氯米松具有亲和力与特异性的单链DNA分子.目前对两者的相互作用仍不清楚,研究适配体与药物的相互作用对适配体的应用具有一定的意义.本研究采用高分辨傅里叶变换离子回旋共振质谱仪(FT-MS)及分子对接软件计算模拟研究适配体与倍氯米松的相互...  相似文献   

7.
Nucleic acids that contain multiple sequential guanines assemble into guanine quadruplexes (G-quadruplexes). Drugs that induce or stabilize G-quadruplexes are of interest because of their potential use as therapeutics. Previously, we reported on the interaction of the Cu(2+) derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (CuTMpyP4), with the parallel-stranded G-quadruplexes formed by d(T(4)G( n )T(4)) (n = 4 or 8) (Keating and Szalai in Biochemistry 43:15891-15900, 2004). Here we present further characterization of this system using a series of guanine-rich oligonucleotides: d(T(4)G( n )T(4)) (n = 5-10). Absorption titrations of CuTMpyP4 with all d(T(4)G( n )G(4)) quadruplexes produce approximately the same bathochromicity (8.3 +/- 2 nm) and hypochromicity (46.2-48.6%) of the porphyrin Soret band. Induced emission spectra of CuTMpyP4 with d(T(4)G( n )T(4))(4) quadruplexes indicate that the porphyrin is protected from solvent. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry revealed a maximum porphyrin to quadruplex stoichiometry of 2:1 for the shortest (n = 4) and longest (n = 10) quadruplexes. Electron paramagnetic resonance spectroscopy shows that bound CuTMpyP4 occupies magnetically noninteracting sites on the quadruplexes. Consistent with our previous model for d(T(4)G(4)T(4)), we propose that two CuTMpyP4 molecules are externally stacked at each end of the run of guanines in all d(T(4)G( n )T(4)) (n = 4-10) quadruplexes.  相似文献   

8.
Leptomeningeal metastasis (LM) is a devastating complication occurring in 5% of breast cancer patients. However, the current 'gold standard' of diagnosis, namely microscopic examination of the cerebrospinal fluid (CSF), is false-negative in 25% of patients at the first lumbar puncture. In a previous study, we analyzed a set of 151 CSF samples (tryptic digests) by MALDI-TOF and detected peptide masses that were differentially expressed in breast cancer patients with LM. In the present study, we obtain for a limited number of samples exact masses for these peptides by MALDI-FTICR MS measurements. Identification of these peptides was performed by electrospray FTICR MS after separation by nano-scale LC. The database results were confirmed by targeted high mass accuracy measurements of the fragment ions in the FTICR cell. The combination of automated high-throughput MALDI-TOF measurements and analysis by FTICR MS leads to the identification of 17 peptides corresponding to 9 proteins. These include proteins that are operative in host-disease interaction, inflammation and immune defense (serotransferrin, alpha 1-antichymotrypsin, hemopexin, haptoglobin and transthyretin). Several of these proteins have been mentioned in the literature in relation to cancer. The identified proteins alpha1-antichymotrypsin and apolipoprotein E have been described in relation to Alzheimer's disease and brain cancer.  相似文献   

9.
Whereas the bearing of mass measurement error on protein identification is sometimes underestimated, uncertainty in observed peptide masses unavoidably translates to ambiguity in subsequent protein identifications. Although ongoing instrumental advances continue to make high accuracy mass spectrometry (MS) increasingly accessible, many proteomics experiments are still conducted with rather large mass error tolerances. In addition, the ranking schemes of most protein identification algorithms do not include a meaningful incorporation of mass measurement error. This article provides a critical evaluation of mass error tolerance as it pertains to false positive peptide and protein associations resulting from peptide mass fingerprint (PMF) database searching. High accuracy, high resolution PMFs of several model proteins were obtained using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS). Varying levels of mass accuracy were simulated by systematically modulating the mass error tolerance of the PMF query and monitoring the effect on figures of merit indicating the PMF quality. Importantly, the benefits of decreased mass error tolerance are not manifest in Mowse scores when operating at tolerances in the low parts-per-million range but become apparent with the consideration of additional metrics that are often overlooked. Furthermore, the outcomes of these experiments support the concept that false discovery is closely tied to mass measurement error in PMF analysis. Clear establishment of this relation demonstrates the need for mass error-aware protein identification routines and argues for a more prominent contribution of high accuracy mass measurement to proteomic science.  相似文献   

10.
Hirano H  Islam N  Kawasaki H 《Phytochemistry》2004,65(11):1487-1498
Since the completion of genome sequences of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. This analysis is achieved by separation and identification of proteins, determination of their function and functional network, and construction of an appropriate database. Many improvements in separation and identification of proteins, such as two-dimensional electrophoresis, nano-liquid chromatography and mass spectrometry, have rapidly been achieved. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. These techniques have provided the possibility of high-throughput analysis of function and functional network of proteins in plants. However, to cope with the huge information emerging from proteome analyses, more sophisticated techniques and software are essential. The development and adaptation of such techniques will ease analyses of protein profiling, identification of post-translational modifications and protein-protein interaction, which are vital for elucidation of the protein functions.  相似文献   

11.
Ihling C  Sinz A 《Proteomics》2005,5(8):2029-2042
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.  相似文献   

12.
Intercellular adhesion molecule-1 (ICAM-1) is a heavily N-glycosylated transmembrane protein comprising five extracellular Ig-like domains. The soluble isoform of ICAM-1 (sICAM-1), consisting of its extracellular part, is elevated in the cerebrospinal fluid of patients with severe brain trauma. In mouse astrocytes, recombinant mouse sICAM-1 induces the production of the CXC chemokine macrophage inflammatory protein-2 (MIP-2). MIP-2 induction is glycosylation dependent, as it is strongly enhanced when sICAM-1 carries sialylated, complex-type N-glycans as synthesized by wild-type Chinese hamster ovary (CHO) cells. The present study was aimed at elucidating the N-glycosylation of mouse sICAM-1 expressed in wild-type CHO cells with regard to sialylation, N-glycan profile, and N-glycosylation sites. Ion-exchange chromatography and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of the released N-glycans showed that sICAM-1 mostly carried di- and trisialylated complex-type N-glycans with or without one fucose. In some sialylated N-glycans, one N-acetylneuraminic acid was replaced by N-glycolylneuraminic acid, and approximately 4% carried a higher number of sialic acid residues than of antennae. The N-glycosylation sites of mouse sICAM-1 were analyzed by MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS and nanoLC-ESI-FTICR-MS of tryptic digests of mouse sICAM-1 expressed in the Lec1 mutant of CHO cells. All nine consensus sequences for N-glycosylation were found to be glycosylated. These results show that the N-glycans that enhance the MIP-2-inducing activity of mouse sICAM-1 are mostly di- and trisialylated complex-type N-glycans including a small fraction carrying more sialic acid residues than antennae and that the nine N-glycosylation sites of mouse sICAM-1 are all glycosylated.  相似文献   

13.
Nakamura T  Dohmae N  Takio K 《Proteomics》2004,4(9):2558-2566
We describe a new approach for the characterization of a digested protein complex with quantitative aspects. Accurate masses of tryptic peptides in the digested complex were acquired by nano-liquid chromatography Fourier transform-ion cyclotron resonance mass spectrometry (MS). The conditions of the electrospray ion source were alternated to acquire normal and fragment-ion-rich mass spectra concurrently. This, alternating-scan method, which includes no tandem mass spectrometry (MS/MS), allowed us to retain the integrity of the mass chromatograms and averted missed peptides due to MS and MS/MS switching. Tentative assignments of accurate peptide masses were verified with the concurrently acquired fragment-ion-rich spectra, and the identities of the protein components were established. For each identified protein component, mass chromatograms attributable to the validated accurate peptide masses were extracted, and the peak areas of multiple mass chromatograms were standardized. The standardized peak areas appeared to reasonably reflect the molar ratio of the protein components in standard mixtures. This new approach was successfully applied to the characterization of a cyanobacterial photosystem II complex preparation. A clear difference in the standardized peak areas was observed between the two groups of identified components, namely eight stoichiometric photosystem II proteins and two minor copurified phycobiliproteins.  相似文献   

14.
Several lines of evidence suggest that up-regulation of asparagine synthetase (AS) in human T-cells results in metabolic changes that underpin the appearance of asparaginase-resistant forms of acute lymphoblastic leukemia (ALL). Inhibitors of human AS therefore have potential as agents for treating leukemia and tools for investigating the cellular basis of AS expression and drug-resistance. A critical problem in developing and characterizing potent inhibitors has been a lack of routine access to sufficient quantities of purified, reproducibly active human AS. We now report an efficient protocol for preparing multi-milligram quantities of C-terminally tagged, wild type human AS in a baculovirus-based expression system. The recombinant enzyme is correctly processed and exhibits high catalytic activity. Not only do these studies offer the possibility for investigating the kinetic behavior of biochemically interesting mammalian AS mutants, but such ready access to large amounts of enzyme also represents a major step in the development and characterization of inhibitors that might have clinical utility in treating asparaginase-resistant ALL.  相似文献   

15.
Chemical modification of proteins is often carried out to generate protein-small molecule conjugates for various applications. The high resolution and mass accuracy of a Fourier transform mass spectrometer is particularly useful for assessing the extent or sites of covalent modifications. As protein-small molecule reactions often produce products with variable numbers of the compound incorporated at different sites, a direct mass analysis of the reaction products at times yields mass spectra hard to interpret. Chromatographic separation at protein level could reduce the complexity of a sample, thus allowing more accurate mass spectrometric analysis. In this report, we demonstrate the utility of reversed-phase protein chromatography and FT-ICR mass spectrometry in analyzing CCNU (lomustine, 1-(2-chloroethyl)-3-cyclohexyl-1-nitroso-urea, MW: 233.7 Da) modification of stathmin. With this combined approach, we determined the stoichiometry as well as sites of CCNU incorporation into the protein, demonstrating differential reactivity of several lysyl residues to CCNU alkylation.  相似文献   

16.
The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation to develop a fundamental understanding of the bystander response. Chinese hamster ovary cells were chosen because they have been widely used for radiation studies and are reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and Fourier transform-ion cyclotron resonance (FT-ICR)-mass spectrometry (MS) analyses. Since the hamster genome has not been sequenced, MS data was searched against the mouse and human protein databases. Nearly 150 proteins identified by tandem mass spectrometry were confirmed by FT-ICR. When both types of MS data were evaluated, using a new confidence scoring tool based on discriminant analyses, about 500 proteins were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface and, hence were likely shed. However, estimates of quantitative changes, based on two independent MS approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using MS in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.  相似文献   

17.
Heparosan is a non-sulfated polysaccharide and potential applications include, chemoenzymatic synthesis of heparin and heparan sulfates. Heparosan is produced using microbial cells (natural producers or engineered cells). The characterization of heparosan isolated from both natural producers and engineered-cells are critical steps towards the potential applications of heparosan. Heparosan is characterized using 1) analysis of intact chain size and polydispersity, and 2) disaccharide composition. The current paper describes a novel method for heparosan chain characterization, using heparin lyase III (Hep-3, an eliminase from Flavobacterium heparinum) and heparanase Bp (Hep-Bp, a hydrolase from Burkholderia pseudomallei). The partial digestion of E. coli K5 heparosan with purified His-tagged Hep-3 results in oligomers of defined sizes. The oligomers (degree of polymerization from 2 to 8, DP2-DP8) are completely digested with purified GST-tagged Hep-Bp and analyzed using gel permeation chromatography. Hep-Bp specifically cleaves the linkage between d -glucuronic acid (GlcA) and N-acetyl-d -glucosamine (GlcNAc) but not the linkage between 4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid (deltaUA) and GlcNAc, and results in the presence of a minor resistant trisaccharide (GlcNAc-GlcA-GlcNAc). This method successfully demonstrated the substrate selectivity of Hep-BP on heparosan oligomers. This analytical tool could be applied towards heparosan chain mapping and analysis of unnatural sugar moieties in the heparosan chain.  相似文献   

18.
We have previously discovered and characterized a novel essential enterobacterial protein, the Ssc protein of Salmonella typhimurium and found that the mutation Val291----Met in this protein inhibits bacterial growth at 42 degrees C and the function of its outer membrane permeability barrier at 37 degrees C [7]. In the present paper we prepared, by site-directed mutagenesis, a series of novel plasmid-encoded Ssc mutant proteins and tested their ability to compensate the loss of wild-type Ssc. The mutant proteins Met288----Lys and Gly289----Asp completely lacked this ability, and accordingly, were very defective. Ssc mutants Met288----Leu, Met290----Lys, and Met292----Lys were partially defective. Mutants Met290----Leu and Met292----Leu were non-defective as were also four randomly made mutant proteins with mutations outside the 288-292 region. The S. typhimurium derivative which contained both the chromosomally encoded Ssc Val291----Met and the plasmid-encoded Ssc Gly289----Asp had an outer membrane defect more severe than that caused by SscMet291 only. The mutant Ssc proteins had very little, if any, effect on the outer membrane function in the presence of wild-type Ssc. Even though the function of Ssc is not yet known, our results indicate that region 288-292 is important and that SscAsp289 is thus far the most defective mutant Ssc.  相似文献   

19.
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.  相似文献   

20.
The Double-stranded DNA bacteriophage P22 has a ring-shaped dodecameric complex composed of the 84 kDa portal protein subunit that forms the central channel of the phage DNA packaging motor. The overall morphology of the P22 portal complex is similar to that of the portal complexes of Phi29, SPP1, T3, T7 phages and herpes simplex virus. Secondary structure prediction of P22 portal protein and its threading onto the crystal structure of the Phi29 portal complexes suggested that the P22 portal protein complex shares conserved helical modules that were found in the dodecameric interfaces of the Phi29 portal complex. To identify the amino acids involved in intersubunit contacts in the P22 portal ring complexes and validate the threading model, we performed comparative hydrogen/deuterium exchange analysis of monomeric and in vitro assembled portal proteins of P22 and the dodecameric Phi29 portal. Hydrogen/deuterium exchange experiments provided evidence of intersubunit interactions in the P22 portal complex similar to those in the Phi29 portal that map to the regions predicted to be conserved helical modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号