首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution structure and backbone dynamics of the recombinant potato carboxypeptidase inhibitor (PCI) have been characterized by NMR spectroscopy. The structure, determined on the basis of 497 NOE-derived distance constraints, is much better defined than the one reported in a previous NMR study, with an average pairwise backbone root-mean-square deviation of 0.5 A for the well-defined region of the protein, residues 7-37. Many of the side-chains show now well-defined conformations, both in the hydrophobic core and on the surface of the protein. Overall, the solution structure of free PCI is similar to the one that it shows in the crystal of the complex with carboxypeptidase A. However, some local differences are observed in regions 15-21 and 27-29. In solution, the six N-terminal and the two C-terminal residues are rather flexible, as shown by 15N backbone relaxation measurements. The flexibility of the latter segment may have implications in the binding of the inhibitor by the enzyme. All the remaining residues in the protein are essentially rigid (S2 > 0.8) with the exception of two of them at the end of a short 3/10 helix. Despite the small size of the protein, a number of amide protons are protected from exchange with solvent deuterons. The slowest exchanging protons are those in a small two-strand beta-sheet. The unfolding free energies, as calculated from the exchange rates of these protons, are around 5 kcal/mol. Other protected amide protons are located in the segment 7-12, adjacent to the beta-sheet. Although these residues are not in an extended conformation in PCI, the equivalent residues in structurally homologous proteins form a third strand of the central beta-sheet. The amide protons in the 3/10 helix are only marginally protected, indicating that they exchange by a local unfolding mechanism, which is consistent with the increase in flexibility shown by some of its residues. Backbone alignment-based programs for folding recognition, as opposite to disulfide-bond alignments, reveal new proteins of unrelated sequence and function with a similar structure.  相似文献   

2.
M F Jeng  S W Englander  G A El?ve  A J Wand  H Roder 《Biochemistry》1990,29(46):10433-10437
Hydrogen exchange and two-dimensional nuclear magnetic resonance (2D NMR) techniques were used to characterize the structure of oxidized horse cytochrome c at acid pH and high ionic strength. Under these conditions, cytochrome c is known to assume a globular conformation (A state) with properties resembling those of the molten globule state described for other proteins. In order to measure the rate of hydrogen-deuterium exchange for individual backbone amide protons in the A state, samples of oxidized cytochrome c were incubated at 20 degrees C in D2O buffer (pD 2.2, 1.5 M NaCl) for time periods ranging from 2 min to 500 h. The exchange reaction was then quenched by transferring the protein to native conditions (pD 5.3). The extent of exchange for 44 amide protons trapped in the refolded protein was measured by 2D NMR spectroscopy. The results show that this approach can provide detailed information on H-bonded secondary and tertiary structure in partially folded equilibrium forms of a protein. All of the slowly exchanging amide protons in the three major helices of native cytochrome c are strongly protected from exchange at acid pH, indicating that the A state contains native-like elements of helical secondary structure. By contrast, a number of amide protons involved in irregular tertiary H-bonds of the native structure (Gly37, Arg38, Gln42, Ile57, Lys79, and Met80) are only marginally protected in the A state, indicating that these H-bonds are unstable or absent. The H-exchange results suggest that the major helices of cytochrome c and their common hydrophobic domain are largely preserved in the globular acidic form while the loop region of the native structure is flexible and partly disordered.  相似文献   

3.
Pulsed hydrogen exchange methods were used to follow the formation of structure during the refolding of acid-denatured staphylococcal nuclease containing a stabilizing Leu substitution at position 124 (H124L SNase). The protection of more than 60 backbone amide protons in uniformly (15)N-labeled H124L SNase was monitored as a function of refolding time by heteronuclear two-dimensional NMR spectroscopy. As found in previous studies of staphylococcal nuclease, partial protection was observed for a subset of amide protons even at the earliest folding time point (10 msec). Protection indicative of marginally stable hydrogen-bonded structure in an early folding intermediate was observed at over 30 amide positions located primarily in the beta-barrel and to a lesser degree in the alpha-helical domain of H124L SNase. To further characterize the folding intermediate, protection factors for individual amide sites were measured by varying the pH of the labeling pulse at a fixed refolding time of 16 msec. Protection factors >5.0 were observed only for amide positions in a beta-hairpin formed by strands 2 and 3 of the beta-barrel domain and a single site near the C-terminus. The results indicate that formation of stable hydrogen-bonded structure in a core region of the beta-sheet is among the earliest structural events in the folding of SNase and may serve as a nucleation site for further structure formation.  相似文献   

4.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

5.
The characterization of residual structures persistent in unfolded proteins in concentrated denaturant solution is currently an important issue in studies of protein folding because the residual structure present, if any, in the unfolded state may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the hydrogen/deuterium (H/D)-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride. We employed a dimethylsulfoxide (DMSO)-quenched H/D-exchange NMR technique with the use of spin desalting columns, which allowed us to perform a quick medium exchange from 6 M guanidinium chloride to a quenching DMSO solution. Based on the backbone resonance assignment of ubiquitin in the DMSO solution, we successfully investigated the H/D-exchange kinetics of 60 identified peptide amide groups in the ubiquitin sequence. Although a majority of these amide groups were not protected, certain amide groups involved in a middle helix (residues 23–34) and an N-terminal β-hairpin (residues 2–16) were significantly protected with a protection factor of 2.1–4.2, indicating that there were residual structures in unfolded ubiquitin and that these amide groups were more than 52% hydrogen bonded in the residual structures. We show that the hydrogen-bonded residual structures in the α-helix and the β-hairpin are formed even in 6 M guanidinium chloride, suggesting that these residual structures may function as a folding initiation site to guide the subsequent folding reactions of ubiquitin.  相似文献   

6.
To advance our understanding of the protein folding process, we use stopped-flow far-ultraviolet (far-UV) circular dichroism and quenched-flow hydrogen–deuterium exchange coupled with nuclear magnetic resonance (NMR) spectroscopy to monitor the formation of hydrogen-bonded secondary structure in the C-terminal domain of the Fas-associated death domain (Fadd-DD). The death domain superfamily fold consists of six α-helices arranged in a Greek-key topology, which is shared by the all-β-sheet immunoglobulin and mixed α/β-plait superfamilies. Fadd-DD is selected as our model death domain protein system because the structure of this protein has been solved by NMR spectroscopy, and both thermodynamic and kinetic analysis indicate it to be a stable, monomeric protein with a rapidly formed hydrophobic core. Stopped-flow far-UV circular dichroism spectroscopy revealed that the folding process was monophasic and the rate is 23.4 s−1. Twenty-two amide hydrogens in the backbone of the helices and two in the backbone of the loops were monitored, and the folding of all six helices was determined to be monophasic with rate constants between 19 and 22 s−1. These results indicate that the formation of secondary structure is largely cooperative and concomitant with the hydrophobic collapse. This study also provides unprecedented insight into the formation of secondary structure within the highly populated Greek-key fold more generally. Additional insights are gained by calculating the exchange rates of 23 residues from equilibrium hydrogen–deuterium exchange experiments. The majority of protected amide protons are found on helices 2, 4, and 5, which make up core structural elements of the Greek-key topology.  相似文献   

7.
H Roder  K Wüthrich 《Proteins》1986,1(1):34-42
A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin (J. Mol. Biol. 135: 199-215, 1979), which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes.  相似文献   

8.
Park SH 《BMB reports》2008,41(1):35-40
The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.  相似文献   

9.
K H Mayo 《Biochemistry》1985,24(14):3783-3794
When H2O-exchanged, lyophilized mouse epidermal growth factor (mEGF) is dissolved in deuterium oxide at low pH (i.e., below approximately 6.0), 13 well-resolved, amide proton resonances are observed in the downfield region of an NMR spectrum (500 MHz). Under the conditions of these experiments, the lifetimes of these amide protons in exchange for deuterons of the deuterium oxide solvent suggest that these amide protons are hydrogen-bonded, backbone amide protons. Several of these amide proton resonances show splittings (i.e., JNH alpha-CH) of approximately 8-10 Hz, indicating that their associated amide protons are in some type of beta-structure. Selective nuclear Overhauser effect (NOE) experiments performed on all amide proton resonances strongly suggest that all 13 of these backbone amide protons are part of a single-tiered beta-sheet structural domain in mEGF. Correlation of 2D NMR correlated spectroscopy data, identifying scaler coupled protons, with NOE data, identifying protons close to the irradiated amide protons, allows tentative assignment of some resonances in the NOE difference spectra to specific amino acid residues. These data allow a partial structural model of the tiered beta-sheet domain in mEGF to be postulated.  相似文献   

10.
The exchange broadening of backbone amide proton resonances of a 23-mer fusion peptide of the transmembrane subunit of HIV-1 envelope glycoprotein gp41, gp41-FP, was investigated at pH 5 and 7 at room temperature in perdeuterated sodium dodecyl sulfate (SDS) micellar solution. Comparison of resonance peaks for these pHs revealed an insignificant change in exchange rate between pH 5 and 7 for amide protons of residues 4 through 14, while the exchange rate increase at neutral pH was more prominent for amide protons of the remaining residues, with peaks from some protons becoming undetectable. The relative insensitivity to pH of the exchange for the amide protons of residues 4 through 14 is attributable to the drastic reduction in [OH–] in the micellar interior, leading to a decreased exchange rate. The A15-G16 segment represents a transition between these two regimes. The data are thus consistent with the notion that the peptide inserts into the hydrophobic core of a membrane-like structure and the A15-G16 dipeptide is located at the micellar-aqueous boundary.  相似文献   

11.
S Linse  O Teleman  T Drakenberg 《Biochemistry》1990,29(25):5925-5934
One- and two-dimensional 1H NMR have been used to study the backbone dynamics in Ca2(+)-free (apo) and Ca2(+)-loaded (Ca2) calbindin D9k at pH 7.5 and 25 degrees C. Hydrogen exchange rates of all 71 backbone amide protons (NH's) have been measured for the Ca2 form by both a direct exchange-out experiment and another experiment that measures the transfer of saturation from water protons to amide protons. A large number of NH's are found to be highly protected against exchange with solvent protons. The results for the Ca2 form are related to solvent accessibility and hydrogen bonding obtained in molecular dynamics simulations of calcium-loaded calbindin. The correlation with these parameters is strong within the N-terminal half of calbindin, which is found to be more stable than the C-terminal half. The amide proton exchange in the apo form is much faster than in the Ca2 form and was studied in a series of experiments in which the exchange was quenched after different times by Ca2+ addition. This experiment is applicable to all amide hydrogens that exchange slowly in the Ca2 form. For these NH's the effects of Ca2+ removal span from a 10(2)-fold decrease to a 10(5)-fold increase of the exchange rate, and the average is a 220-fold increase. The effects on individual NH exchange rates show that the four alpha-helices are almost intact after calcium removal and that the changes in dynamics involve not only the Ca2(+)-binding region. Hydrogen bonds involving backbone NH's in the Ca2+ loops appear to be broken or weakened when calbindin releases Ca2+, whereas the beta-sheet between the Ca2+ loops is found to be present in both the Ca2 and apo forms. Large Ca2(+)-induced effects on NH exchange rates were measured for a few residues at alpha-helix ends far from the two Ca2(+)-binding sites. This may be the result of a change in interhelix angles (or the rate of interhelix angle fluctuations) on calcium binding.  相似文献   

12.
Baxter SM  Fetrow JS 《Biochemistry》1999,38(14):4493-4503
Heteronuclear NMR spectroscopy was used to measure the hydrogen-deuterium exchange rates of backbone amide hydrogens in both oxidized and reduced [U-15N]iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. The exchange data confirm previously reported data [Marmorino et al. (1993) Protein Sci. 2, 1966-1974], resolve several inconsistencies, and provide more thorough coverage of exchange rates throughout the cytochrome c protein in both oxidation states. Combining the data previously collected on unlabeled C102T with the current data collected on [U-15N]C102T, exchange rates for 53 protons in the oxidized state and 52 protons in the reduced state can now be reported. Most significantly, hydrogen exchange measurements on [U-15N]iso-1-cytochrome c allowed the observation of exchange behavior of the secondary structures, such as large loops, that are not extensively hydrogen-bonded. For the helices, the most slowly exchanging protons are found in the middle of the helix, with more rapidly exchanging protons at the helix ends. The observation for the Omega-loops in cytochrome c is just the opposite. In the loops, the ends contain the most slowly exchanging protons and the loop middles allow more rapid exchange. This is found to be true in cytochrome c loops, even though the loop ends are not attached to any regular secondary structures. Some of the exchange data are strikingly inconsistent with data collected on the C102S variant at a different pH, which suggests pH-dependent dynamic differences in the protein structure. This new hydrogen exchange data for loop residues could have implications for the substructure model of eukaryotic cytochrome c folding. Isotopic labeling of variant forms of cytochrome c can now be used to answer many questions about the structure and folding of this model protein.  相似文献   

13.
Bovine beta-lactoglobulin (beta-LG) is a widely studied protein belonging to the lipocalin family, whose structural characterisation has been reported by X-ray crystallography and NMR studies at physiological and acidic pH, respectively. Bovine beta-LG consists of nine antiparallel beta-sheets and a terminal alpha-helix segment. The beta-sheets form a calyx structure with a hydrophobic buried cluster conferring stability to the protein while a hydrophobic surface patch provides stabilising interactions between the barrel and the flanking terminal helix. Here, the stability and the folding properties of bovine beta-LG in the presence of a chemical denaturant is probed. The analysis of the NMR spectra recorded in aqueous solution with increasing amounts of urea revealed that the intensities of the backbone cross-peaks decrease upon increasing urea concentration, while their secondary shifts do not change significantly on going from 0 to 5 M urea, thus suggesting the presence of slow exchange between native and unfolded protein. Hydrogen exchange measurements at different urea concentrations were performed in order to evaluate the exchange rates of individual backbone amide protons. The opening reactions that determine protein exchange can be computed for the most slowly exchanging hydrogen atoms, and the measured exchange rates and the corresponding free energies can be expressed in terms of the equilibrium energetic for the global transition and the local fluctuations. Most of the residues converge to define a common isotherm identifying a unique cooperative folding unit, encompassing all the strands, except strand betaI, and the terminal region of the helix. The amides that do not join the same global unfolding isotherm are characterised by low DeltaGH20op and especially by low m values, indicating that they are already substantially exposed in the native state. A two-state unfolding model N <==> U is therefore proposed for this rather big protein, in agreement with CD data. Renaturation studies show that the unfolding mechanism is reversible up to 6 M urea and suggest a similar unfolding and refolding pathway. Present results are discussed in light of the hypothesis of an alpha-->beta transition proposed for bovine beta-LG refolding.  相似文献   

14.
Szewczuk Z  Konishi Y  Goto Y 《Biochemistry》2001,40(32):9623-9630
Acetylation of Lys residues of horse cytochrome c steadily stabilizes the molten globule state in 18 mM HCl as more Lys residues are acetylated [Goto and Nishikiori (1991) J. Mol. Biol. 222, 679-686]. The dynamic features of the molten globule state were characterized by hydrogen/deuterium exchange of amide protons, monitored by mass spectrometry as each deuteration increased the protein mass by 1 Da. Electrospray mass spectrometry enabled us to monitor simultaneously the exchange kinetics of more than seven species with a different number of acetyl groups. One to four Lys residue-acetylated cytochrome c showed almost no protection of the amide protons from rapid exchange. The transition from the unprotected to the protected state occurred between five and eight Lys residue-acetylated species. For species with more than nine acetylated Lys residues, the exchange kinetics were independent of the extent of acetylation, and 26 amide protons were protected at 60 min of exchange, indicating the formation of a rigid hydrophobic core with hydrogen-bonded secondary structures. The apparent transition to the protected state required a higher degree of acetylation than the conformational transition measured by circular dichroism, which had a midpoint at about four acetylated residues. This difference in the transitions suggested a two-process model in which the exchange occurs either from the protected folded state or from the unprotected unfolded state through global unfolding. On the basis of a two-process model and with the reported values of the exchange and stability parameters, we simulated the exchange kinetics of a series of acetylated cytochrome c species. The simulated kinetics reproduced the observed kinetics well, indicating validity of this model for hydrogen exchange of the molten globule state.  相似文献   

15.
NMR-detected hydrogen/deuterium (H/D) exchange of amide protons is a powerful way for investigating the residue-based conformational stability and dynamics of proteins in solution. Maize ferredoxin-NADP(+) reductase (FNR) is a relatively large protein with 314 amino acid residues, consisting of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADP(+))-binding domains. To address the structural stability and dynamics of FNR, H/D exchange of amide protons was performed using heteronuclear NMR at pD(r) values 8.0 and 6.0, physiologically relevant conditions mimicking inside of chloroplasts. At both pD(r) values, the exchange rate varied widely depending on the residues. The profiles of protected residues revealed that the highly protected regions matched well with the hydrophobic cores suggested from the crystal structure, and that the NADP(+)-binding domain can be divided into two subdomains. The global stability of FNR obtained by H/D exchange with NMR was higher than that by chemical denaturation, indicating that H/D exchange is especially useful for analyzing the residue-based conformational stability of large proteins, for which global unfolding is mostly irreversible. Interestingly, more dynamic conformation of the C-terminal subdomain of the NADP(+)-binding domain at pD(r) 8.0, the daytime pH in chloroplasts, than at pD(r) 6.0 is likely to be involved in the increased binding of NADP(+) for elevating the activity of FNR. In light of photosynthesis, the present study provides the first structure-based relationship of dynamics with function for the FNR-type family in solution.  相似文献   

16.
The three-dimensional solution structure of microcin J25, the single cyclic representative of the microcin antimicrobial peptide class produced by enteric bacteria, was determined using two-dimensional 1H NMR spectroscopy and molecular modeling. This hydrophobic 21-residue peptide exhibits potent activity directed to Gram-negative bacteria. Its primary structure, cyclo(-V1GIGTPISFY10GGGAGHVPEY20F-), has been determined previously [Blond, A., Péduzzi, J., Goulard, C., Chiuchiolo, M. J., Barthélémy, M., Prigent, Y., Salomón, R.A., Farías, R.N., Moreno, F. & Rebuffat, S. (1999) Eur. J. Biochem., 259, 747-755]. Conformational parameters (3JNHCalphaH coupling constants, quantitative nuclear Overhauser enhancement data, chemical shift deviations, temperature coefficients of amide protons, NH-ND exchange rates) were obtained in methanol solution. Structural restraints consisting of 190 interproton distances inferred from NOE data, 11 phi backbone dihedral angle and 9 chi1 angle restraints derived from the coupling constants and three hydrogen bonds in agreement with the amide exchange rates were used as input for simulated annealing calculations and energy minimization in the program XPLOR. Microcin J25 adopts a well-defined compact structure consisting of a distorted antiparallel beta sheet, which is twisted and folded back on itself, thus resulting in three loops. Residues 7-10 and 17-20 form the more regular part of the beta sheet. The region encompassing residues Gly11-His16 consists of a distorted beta hairpin, which divides into two small loops and is stabilized by an inverse gamma turn and a type I' beta turn. The reversal of the chain leading to the Phe21-Pro6 loop results from a mixed beta/gamma turn. A cavity, in which the hydrophilic Ser8 side-chain is confined, is delimited by two crab pincer-like regions that comprise residues 6-8 and 18-1.  相似文献   

17.
Summary All the backbone 1H and 15N magnetic resonances (except for Pro residues) of the GDP-bound form of a truncated human c-Ha-ras proto-oncogene product (171 amino acid residues, the Ras protein) were assigned by 15N-edited two-dimensional NMR experiments on selectively 15N-labeled Ras proteins in combination with three-dimensional NMR experiments on the uniformly 15N-labeled protein. The sequence-specific assignments were made on the basis of the nuclear Overhauser effect (NOE) connectivities of amide protons with preceding amide and/or Cprotons. In addition to sequential NOEs, vicinal spin coupling constants for amide protons and C protons and deuterium exchange rates of amide protons were used to characterize the secondary structure of the GDP-bound Ras protein; six strands and five helices were identified and the topology of these elements was determined. The secondary structure of the Ras protein in solution was mainly consistent with that in crystal as determined by X-ray analyses. The deuterium exchange rates of amide protons were examined to elucidate the dynamic properties of the secondary structure elements of the Ras protein in solution. In solution, the -sheet structure in the Ras protein is rigid, while the second helix (A66-R73) is much more flexible, and the first and fifth helices (S17-124 and V152-L171) are more rigid than other helices. Secondary structure elements at or near the ends of the effector-region loop were found to be much more flexible in solution than in the crystalline state.  相似文献   

18.
Despite numerous efforts, the lack of detailed structural information on amyloid fibrils has hindered clarification of the mechanism of their formation. Here, we describe a novel procedure for characterizing the conformational flexibility of beta(2)-microglobulin amyloid fibrils at single-residue resolution that uses H/D exchange of amide protons combined with NMR analysis. The results indicate that most residues in the middle region of the molecule, including the loop regions in the native structure, form a rigid beta-sheet core, whereas the the N- and C-termini are excluded from this core. The extensively hydrogen-bonded beta-sheet core explains the remarkable rigidity and stability of amyloid fibrils. The present method could be used to obtain residue-specific conformational information of various amyloid fibrils, even though it does not provide a high resolution three-dimensional structure.  相似文献   

19.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

20.
Staphylococcal nuclease: sequential assignments and solution structure   总被引:4,自引:0,他引:4  
D A Torchia  S W Sparks  A Bax 《Biochemistry》1989,28(13):5509-5524
Sequential assignments are reported for backbone 15N and 1H of nearly all residues of staphylococcal nuclease (Nase) complexed with thymidine 3',5'-diphosphate and Ca2+. Because of the relatively large size of the Nase ternary complex, Mr 18K, the crucial element of our assignment strategy was the use of isotope-edited two-dimensional NMR spectra, particularly 15N-edited nuclear Overhauser enhancement spectroscopy (NOESY), 15N-edited J-correlated spectroscopy (COSY), and 1H/15N or 1H/13C heteronuclear multiple quantum shift correlation spectroscopy (HMQC). These experiments, together with the more conventional NOESY, COSY, and homonuclear Hartmann-Hahn spectra of natural abundance or deuteriated samples, yielded backbone assignments of 127 of the 136 residues in the structured part of the protein. Using the NOESY data, we identified three helical domains and several beta-sheets which were in close correspondence with secondary structure identified in the crystal structure. Moreover, many long-range NOESY connectivities were identified that were in agreement with distances derived from the crystal structure. The region of the sequence in the neighborhood of residue 50 appears to be more flexible and disordered in solution than in the crystal. Very slowly exchanging amide protons are those found to be hydrogen bonded in the crystal structure; however, even hydrogen-bonded amides located within similar types of regular secondary structures, e.g., alpha-helices, exchange with greatly different rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号