首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roots of cress (Lepidium sativum L, ) seedlings continuouslystimulated at an angle of 135°—root tips pointingobliquely upwards—develop a larger final geotropic curvaturethan roots stimulated at 45° or 90°. This well-knownbehaviour has previously been interpreted as support for thestarch statolith hypothesis. In the present experiments two groups of cress and lettuce (Lactucasativa L.) seedlings were used: (a) the control group in whichthe roots were allowed to curve without adjustment of the stimulationangle, and (b) the test group in which the roots were readjustedat different time intervals to the original stimulation angle.They were stimulated continuously at 45°, 90°, or 135°and the development of root curvatures was followed over a periodof 5–8 h. Initially (1–2 h) the rate of curvature was approximatelythe same for 135° and 90° control and tested cress andlettuce roots. Thereafter the test roots stimulated at 135°followed a linear curvature pattern. Seedlings stimulated at45° and 90° did not show the same linearity in curvaturedevelopment in the test group. The rates of curvature in thetest group were generally higher than in the control group atangles less than 135°. Cress seedlings were examined by light and electron microscopyin order to follow the movement of the cell organelles in thestatocytes. In the statocytes of roots of test seedlings thestarch statoliths were located in the position attained beforethe first readjustment of the stimulation angle. In the statocytesof control roots the starch statoliths followed the curvatureof the root tip sliding along the cell walls and attaining therest position as in normally orientated roots. The behaviour of control and readjusted roots is interpretedas a result of interaction between starch statoliths and endoplasmicreticulum membranes.  相似文献   

2.
Previously inverted Lepidium roots were placed in a horizontal position and the amyloplasts in the statocytes of the root cap allowed to fall through their entire range of movement across the cell. Under these conditions the amyloplasts first follow a mainly downward course for 6 to 8 min at a speed between 0.5 and 0.8 μm per min. For the next 10 min they move slightly more slowly in a direction away from the apical end of the cell, still sinking somewhat, but without reaching the plasmalemma along the lower wall. Previous experiments have shown that conditions assumed to allow the amyloplasts to slide parallel to the longitudinal cell walls are those that give rise to the largest geotropic curvatures. Such conditions are for instance (1) stimulation at 135° (root tips pointing obliquely upward) and (2) inversion of roots for 16 min followed by stimulation at 45°. Treatments assumed not to permit extensive sliding of the amyloplasts produce smaller geotropic curvatures, namely (3) stimulation at 45° without pre-inversion and (4) inversion followed by stimulation at 135°. The location of the amyloplasts after these four kinds of treatment has now been determined on photomicrographs and the assumptions concerning the paths and extent of sliding of the amyloplasts confirmed. Observations on electron micrographs showed that under all conditions the amyloplasts are separated from the plasmalemma by other organelles, such as ER, nucleus or vacuoles. In roots rotated for 15 min parallel to the horizontal axis of the klinostat at 2 rpm, the amyloplasts are not clumped together as densely as in normal, inverted or stimulated roots, but they are not scattered over the entire cell volume. The statolith function of the amyloplasts is discussed in view of these and other observations.  相似文献   

3.
Poul  Larsen 《Physiologia plantarum》1969,22(3):469-488
Roots which are turned from their normal direction to directions at various angles with the plumb line develop the largest geotropic curvatures during a subsequent klinostat rotation period when the stimulation angle is well above the horizontal. In experiments with roots of Lepidium sativum L., the optimum is located at 120 to 140° when the stimulation time is between 2 and 15 min. If this fact is to be explained by the movements of amyloplasts in the root cap cells, one would expect roots which bad been kept inverted before the stimulation (so that the moveable amyloplasts are accumulated in the opposite end of the cells) to show an optimum angle well below 90°. — Pre-inversion of the roots did suppress the curvatures produced by stimulation at angles larger than 90° when measured after 10 to 30 min of klinostat rotation. This suppression may be taken as a support for the starch statolith hypothesis, since the amyloplasts in pre-inverted roots placed at angles exceeding 90° have a restricted opportunity to slide along the cell walls compared to non-inverted roots placed at the same angles. In pre-inverted roots measured after a period of klinostat rotation, however, no optimum was found at angles below 90°. When the stimulation time was 3.75 min, the response curves were nearly symmetrical about 90°. Stimulation for 15 min, on the other hand, resulted in curvatures which were much larger (although suppressed in comparison with non-inverted roots) when the stimulation angle was 165° than when it was 15°. During the 15 min stimulation period itself, however, pre-inverted roots curved 0.3° when stimulated at 15, but only 3.4° at 165°. This small difference was very highly significant and is in agreement with the starch statolith hypothesis insofar as the amyloplasts in pre-inverted roots placed at 15° have the greatest opportunity to slide along the cell walls. The lack of further development (and the actual decrease) of their curvatures during the subsequent klinostat rotation must then be due to other, depressing, factors, summarily designated as tonic. At angles above 90°, the tonic factors are either absent or even enhancing. Tbe tonic effects cannot be explained by amyloplast movements.  相似文献   

4.
Seedlings of Norway spruce (Picea abies L.) have been found to synthesize anthocyanins in the root tips as well as in the hypocotyls upon irradiation with white light when kept at 4°C for 6–8 days. In addition, it has also been found that the elongation and the geotropic curvature of spruce roots are dependent on the light conditions. The course of the geotropic curvature in spruce roots containing anthocyanins has been followed during a period of 5 h, in which the seedlings were geotropically stimulated continuously in the horizontal position. When the stimulation was performed in white light and in darkness at 21°C, significantly larger curvatures were observed in the roots pretreated at 4°C in darkness than in the roots containing anthocyanins. The specific curvature (curvature in degrees per mm elongation), however, was approximately the same in both types of roots stimulated in white light. This was due to a retarded elongation of the roots pretreated with light at 4°C and containing anthocyanins. A smaller difference in elongation rate between roots with and without anthocyanins was observed in the dark than in the light, but even in the dark the anthocyanin-containing roots grew more slowly than roots without anthocyanins. In order to find out if it is the anthocyanin content or the illumination which affects the elongation and geotropic curvature in the roots, a series of similar experiments was performed using cress seedlings grown at 4°C in light or darkness. Roots of cress seedlings cultivated under conditions which would induce anthocyanin formation in spruce roots exhibited the highest geotropic responses both in light and darkness as compared to cress seedlings grown at 4°C in darkness. As in the case of spruce roots an increase in elongation was observed in cress roots illuminated during the geotropic stimulation. These similarities in the behaviour made it relevant to compare the development of the geotropic curvature in cress and spruce roots.  相似文献   

5.
Geotropic Curvatures in Roots of Cress (Lepidium sativum)   总被引:1,自引:0,他引:1  
Roots of cress growing between two agar slices develop an asymmetry in the extreme root tip region after 10 to 20 min of horizontal stimulation. After prolonged stimulation (exceeding 50 min) the asymmetry disappears and after 3 h the curvature is distributed over the entire growing region. The course of the initial stages in the geotropic curvature has been followed by light microscopy and scanning electron microscopy. — When stimulated at an angle of 135° with the gravitational force, the asymmetry in the root tip is clearly visible after 10 min of stimulation. The asymmetry in the root cap can be explained by a difference in the elongation rate of the epidermal cells on the upper and lower sides of the stimulated root. The disappearance of the asymmetry is followed by a second phase in which there is a differential growth of the cortical cells on the two sides of the elongation zone. The average growth rate of cells in the upper half of the apical region during the first 50 min of continuous stimulation is 1.5 μm per min, while the elongation rate of the entire root is 16.2 μm per min. Only small modifications in the elongation rates were observed when stimulated and unstimulated roots were rotated parallel to the horizontal axis of a klinostat at 2 rpm. The ultimate curvature developed after 50 min is unaffected by stimulation times exceeding the reaction time which for cress roots has been found to be about 5 min. The two phases in the development of geotropic curvature are discussed in view of the statolith theory.  相似文献   

6.
In an attempt to explain the influence of gravity on the behaviour of ageotropic plant organs, a pea mutant (Pisum sativum ageotropum) and normal pea (Pisum sativum cv. Sabel) were examined. The mutant has a significantly lower germination rate (large seeds: 25%, small seeds: 10%) than normal pea seeds (55%). Removal of testa increased germination dramatically, the values obtained were 63 and 89%, respectively. Immediately after imbibition the mutant from which the testa had been removed, developed more slowly than normal pea seeds; after 28 h the difference in elongation rate between the two types was reversed. When continuously stimulated geotropically in the horizontal position the elongation in the mutant is larger than in the normal pea roots kept in the same position. During a 24 h period starting 48 h after imbibition the mutant root elongated 45.0 mm while the value for the normal pea root was 11.5 mm. The course of the geotropic curvature in roots of the two types has been followed during a period of 24 h. Normal pea roots develop an asymmetry in the extreme root tip region after 30 min of horizontal stimulation. After prolonged stimulation (exceeding 2 h) the asymmetry has disappeared and the curvature distributed over the entire growth region. When roots of normal pea are stimulated continuously at various angles, the optimum angle of geotropic response is 90° with decreasing responses in the order 135° (i.e. the root tip is pointing obliquely upward) and 45°. The presumed ageotropic behaviour of the mutant has only to a certain extent been confirmed in the present study. When stimulated at 135° a slight positive curvature developed; stimulation at 90° and 45° gave a slight negative curvature.  相似文献   

7.
The minimum dose (dose = stimulus x time), one of three threshold values related to gravity, was determined under microgravity conditions for cress roots. Seedlings were cultivated on a 1g centrifuge in orbit and under microgravity, respectively. After continuous stimulation on a threshold centrifuge, minimum doses of 20-30 gs for microgravity roots and 50-60 gs for roots grown on a 1g centrifuge were estimated, which indicated that microgravity roots have a higher sensitivity than 1g roots. These results do not confirm the threshold value of 12gs which was determined for cress roots using the slow rotating clinostat. Following application of intermittent stimuli to microgravity-grown roots, gravitropic responses were observed after two stimuli of 13.5 gs separated by a stimulus-free interval of 118s. Generally, this demonstrates that higher plants are able to 'sum up' stimuli which are below the threshold value. Microscopic investigations of the cellular structure corresponding to stimulations in the range of the threshold value demonstrated a small displacement of statoliths in root statocytes. No significant correlation was observed between gravitropic curvature and statolith displacement. If the statolith theory is accepted, it can be concluded that stimulus transformation must occur in the cytoplasm in the near vicinity of the statoliths and that this transformation system--probably involving cytoskeletal elements--must have been affected during microgravity seedling cultivation.  相似文献   

8.
Mechanotransduction in root gravity sensing cells   总被引:1,自引:0,他引:1  
The analysis of the dose-response curve of the gravitropic reaction of lentil seedling roots has shown that these organs are more sensitive when they have been grown in microgravity than when they have been grown on a 1 g centrifuge in space before gravistimulation. This difference of gravisensitivity is not due to the volume or the density of starch grains of statoliths, which are about the same in both conditions (1 g or microgravity). However, the distribution of statoliths within the statocyte may be responsible for this differential sensitivity, since the dispersion of these organelles is greater in microgravity than in 1 g. When lentil roots grown in microgravity or in 1 g are stimulated at 0.93 g for 22 min, the amyloplasts sediment following two different trajectories. They move from the proximal half of the statocytes toward the lower longitudinal wall in the microgravity grown sample and from the distal half toward the longitudinal wall in the 1 g grown sample. At the end of the stimulation, they reach a similar position within the statocytes. If the roots of both samples are left in microgravity for 3 h, the amyloplasts move toward the cell centre in a direction that makes an average angle of 40 degrees with respect to the lower longitudinal wall. The actin filaments, which are responsible for this movement, may have an overall orientation of 40 degrees with respect to this wall. Thus, when roots grown in microgravity are stimulated on the minicentrifuge the amyloplasts slide on the actin filaments, whereas they move perpendicular to them in 1 g grown roots. Our results suggest that greater sensitivity of seedling roots grown in microgravity should be due to greater dispersion of statoliths, to better contacts between statoliths and the actin network and to greater number of activated mechanoreceptors. One can hypothesize that stretch activated ion channels (SACs) located in the plasma membrane are responsible for the transduction of gravistimulus. These SACs may be connected together by elements of the cytoskeleton lining the plasma membrane and to the actin filaments. They could be stimulated by the action of statoliths on the actin network and/or on these elements of the cytoskeleton which link the mechanoreceptors (SACs).  相似文献   

9.
We have examined the growth and gravitropic response of seedling roots of rapeseed ( Brassica napus . CrGC5–1) transformed by Agrobacterium rhizogenes A4, in order to evaluate if this could constitute a new model system for the study of gravitropism. The transformed clone chosen for study had integrated full-length TL- and TR-DNA from pRi (the root inducing plasmid), and thus included all of the agrobacterial genes potentially involved in the modified phenotype of transformed plants. In the vertical position, the growth rate of transformed roots was higher than controls. During 24 h of continuous stimulation, the optimal angle for gravitropic bending in normal roots was 135° (with respect to the gravity axis), with decreasing response at 90° and 45°. For transformed roots, slight curvature developed at 45° and at 90°, and stronger curvature was observed at 135°, though transformed roots tips never reached the vertical position. The minimum stimulation time necessary to elicit a response (presentation time) was also determined: it was signficantly shorter in normal roots (80 s) than in transformed ones (120 s). The results show that pRi transformed roots are less sensitive to gravity than normal roots.  相似文献   

10.
Wheat seedlings were subjected to heat shock for 2 min at 45°C. The seedlings were then incubated at 25°C or higher temperatures (usually 35°C). At 25°C the root tips survived the heat shock, but not at temperatures above 34°C, unless they had been pretreated with ethanol or kinetin, After 1 h in ethanol and after more than 15 h in kinetin the root meristem survived a high incubation temperature after the heat shock. Immediately after heat treatment the glyceride content in treated root tips was higher than in untreated roots. The same was observed after heat treatment of root tips pretreated in ethanol and kinetin. The content of ether extractable lipids was not changed by the heat shock.  相似文献   

11.
The movement of auxin in Phaseolus vulgaris roots has been examined after injection of IAA?3H into the basal root/hypocotyl region of intact, dark-grown seedlings. Only a portion of the applied IAA?3H was transported unchanged to the root tip. The major part of the chromatographed, labelled compounds translocated to the roots was indole-3-acetylaspartic acid (IAAsp) and an unidentified compound running near the front in isopropanol, ammonia, water. The velocity of the auxin transport (7.2 mm per hour) was calculated from scintillation countings of methanol extracts from serial sections of the root. An accumulation of radioactive compounds in the extreme root tip, was observed 5 h after the injection of IAA. The influence of exogenous IAA on the geotropical behaviour of the bean seedling roots was examined. Pretreated roots were stimulated for 5 min in the horizontal position and then rotated parallel to the horizontal axis of the klinostat for 60 or 90 min. The resulting geotropic curvature of IAA-injected and control roots showed significantly different patterns of development. When the stimulation was started 5 h after application of the auxin, the geotropic curvature became larger in roots of the injected plants than in the controls. If, however, the translocation period was extended to 20 h the geotropic curvature was significantly smaller in the roots of the injected plants. The auxin injection did not significally affect the rate of root elongation. The change in geotropical behaviour of the roots is interpreted as a result of the influence of the conversion products of the applied IAA on the geotropical responsiveness.  相似文献   

12.
The geotropic development in roots of Norway spruce [(Picea abies (L.)] H. Karst, has been followed by light and electron microscopy and compared with the movement of cell organelles (statoliths) in the root cap cells. The geotropic curvature develops in two phases: (a) an initial curvature in the root cap region, which results in an asymmetry in the extreme root tip and which appears after about 3 h stimulation in the horizontal position; and (b) the geotropic curvature in the basal parts of the root tip, which after 8 h is distributed over the entire elongation zone. A graphic extrapolation, based on measurements of the root curvatures after various stimulation periods, indicates a presentation time in the range of 8 to 10 min. The root anatomy and ultrastructure have been examined in detail in order to obtain information as to which organelles may act as gravity receptors. The root cap consists of a central core (columella) distinct from the peripheral part. The core contains three to four rows of parenchymatic cells each consisting of 15 to 18 storeys of statocyte cells with possibly mobile cell organelles. Amyloplasts and nuclei have been found to be mobile in the root cap cells, and the movement of both types of organelles has been followed after inversion of the seedlings and stimulation in the horizontal position for various periods of time at 4°C and 21°C. Three-dimensional reconstructions of spruce root cap cells based on serial sectioning and electron microscopy have been performed. These demonstrate that the endoplasmic reticulum (ER)-system and the vacuoles occupy a considerable part of the statocyte cell. For this reason the space available for free movement of single statolith particles is highly restricted.  相似文献   

13.
The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185–197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.Abbreviations S2 story two - S3 story three - WT wild-type  相似文献   

14.
We describe the features of the root system and the gravitropism of roots produced bySonneratia alba. The root system consists of four root types with different growth directions: (a) Pneumatophores, which are negatively orthogravitropic and their statocytes are very large (922 μm2) and the statolith is located near the proximal wall, (b) Cable roots and (c) Feeding roots which are both diagravitropic and their statoliths are settled along the longitudinal wall, and (d) Anchor roots which are positively orthogravitropic. The statocyte cells are the smallest (420 μm2) and statoliths settled at the distal wall. We found that all roots with marked gravitropism have statoliths that settle along different walls of the statocyte. This implies that the statoliths sensing of gravity is done by gravity on mass, and that they are denser than surrounding cytoplasm and this position is related to root growth direction. This finding matches the statoliths sediment under the effect of gravity. Irrespective of statolith, position and direction of growth may be stable.  相似文献   

15.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

16.
Nematodes are important quarantine pests of bulbous plants such as hooker chives. Although control methods such as fumigation, chemical immersion, and heat are often applied, it has proved difficult to disinfect nematodes from plant roots in quarantine. As heat treatment has been successfully useful for the control of nematodes in other agricultural products in quarantine, we investigated the susceptibility and mortality rates of Meloidogyne javanica and Pratylenchus coffeae, which infest hooker chive roots, using a hot water immersion method. Heat damage to the hooker chive roots was noticeable at temperatures over 50°C. Temperatures for the effective time to kill 99% at 1 min (ET99) for M. javanica and P. coffeae juveniles were 49.3°C and 49.1°C, respectively. However, the time to kill 99% of M. javanica eggs at 48°C and 49°C were 27.0 min and 8.3 min, respectively. Using a thermal equilibrium formula, the optimum commercial scale condition, in a 1400‐L chamber, for nematode control without associated plant damage was water immersion at 48.2°C for 30 min or at 49.2°C for 13 min with a filling ratio less than 12%. This result can be applicable for the nematode disinfestation of hooker chive roots in plant quarantine.  相似文献   

17.
It has recently been documented that, compared to untransformed controls, the roots of oilseed rape (Brassica napus L. CV CrGC5) seedlings transformed by Agrobacterium rhizogenes A4 show a reduced gravitropic reaction (Legué et al. 1994, Physiol Plant 91: 559–566). After stimulation at 90°C or 135°, the transformed root tips curve, but never reach a vertical orientation. In the present study, we investigated the causes of reduced gravitropic bending observed in stimulated transformed root tips. First, we localized the gravitropic curvature in normal and in transformed roots after 1.5 h of stimulation. The cells involved in root curvature (target cells) corresponded at the cellular level to the apical part of the zone of increasing cell length. In transformed roots grown in the vertical position, these cells showed a reduction in cell length compared to controls. Because auxin is considered to be the gravitropic mediator, the response of normal and transformed roots to exogenous auxin was studied. Indole-3-acetic acid (IAA) was applied along the first 3 mm using resin beads loaded with the hormone. In comparison to normal roots, transformed roots showed reduced bending toward the bead at all points of bead application. Moreover, the cells which responded to IAA corresponded to the target cells involved in the gravitropic reaction. The level of endogenous IAA was lower in transformed roots. Thus, it was concluded that the modified behavior of transformed roots during gravitropic stimulation could be due to differences either in IAA levels or in reactivity of the target cells to the message from the cap.Abbreviations DEZ distal elongation zone - ELISA enzymelinked immunosorbent assay - T-DNA DNA transferred from Agrobacterium rhizogenes to the plant genome This work was supported by the Centre National d'Etudes Spatiales.  相似文献   

18.
Plant Growth Inhibitory Compounds from Aqueous Leachate of Wheat Straw   总被引:3,自引:0,他引:3  
When seedlings of lettuce, cress, rice and wheat were incubated with the leachate of wheat straw, the roots growth of lettuce and garden cress were particularly inhibited. The leachate of wheat straw (100 g eq./l) showed 80.5 and 79.4% inhibition for lettuce and cress roots, respectively. The inhibitory activity was stronger as the concentration of wheat straw leachate was greater. This result indicates that allelochemical(s) inhibiting the roots growth of lettuce and cress are leached from the wheat straw into the water. Two potent compounds were isolated from the leachate of the wheat straw and identified as syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan by spectral analyses. Syringoylglycerol 9-O-β-d-glucopyranoside inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 10.0 μM, respectively. On the other hand, l-tryptophan inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 1.0 μM, respectively. The content of syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan in the leachate of wheat straw (100 g eq./l) was 18.4 ± 0.7 and 6.2 ± 0.6 μM, respectively. Syringoylglycerol 9-O-β-d-glucopyranoside (18.4 μM) showed 21.5 and 13.5% inhibition in the lettuce and cress roots assay, respectively. On the other hand, 6.2 μM of l-tryptophan showed 47.5 and 35.0% inhibition in the lettuce and cress roots assay, respectively. These results suggested that l-tryptophan may be a major contributor to the allelopathy in aqueous leachate of wheat straw and syringoylglycerol 9-O-β-d-glucopyranoside may be a minor contributor.  相似文献   

19.
In the TRANSFORM experiment for IML-2 on the Space Shuttle Columbia, normal (wild type = WT) and genetically transformed agravitropic rapeseed roots were tested under microgravity conditions. The aim of the experiment was to determine if the wild-type roots behaved differently (growth, morphology, gravitropical sensitivity) from the transgenic roots. The appearance of the organelles and distribution of statoliths (i.e. amyloplasts with starch grains) in the gravitropic reactive cells (statocytes) under weightlessness was compared for the two types of roots. Attempts have also been made to regenerate new plants from the root material tested in space. Both the WT and the transgenic root types showed the expected increase in length during 36 h of photorecording. Contrary to the results of the ground controls, no significant difference in elongation rates was found between the WT and transgenic roots grown in orbit. However, there are indications that the total growth both in the WT and the transgenic roots was higher in the ground control than for roots in orbit. After a 60 min 1 x g stimulation of the roots on board the Shuttle, no detectable curvatures were obtained in either the transgenic or the WT roots. However, it cannot be excluded that a minute curvature development occurs in the root tips but was not detected due to technical reasons. The ultrastructure was well preserved in both the WT and the transgenic roots, despite the fact that the tissue was kept in the prefixative for over 3 weeks. No marked differences in ultrastructure were observed between the transformed root statocyte cells and the equivalent cells in the wild type. There were no obvious differences in root morphology during the orbital period. Light micrographs and morphometrical analysis indicate that the amyloplasts of both the wild type and transformed root statocytes are randomly distributed over the cells kept under micro-g conditions for 37 h after a 14 h stimulation on the 1 x g centrifuge. The main scientific conclusion from the TRANSFORM experiment is that the difference in growth found in the ground control between the WT and the transgenic root types seems to be eliminated under weightlessness. Explanations for this behaviour cannot be found in the root ultrastructure or in root morphology.  相似文献   

20.
The growth and graviresponsiveness of roots were investigated in lentil seedlings (Lens culinaris L. cv. Verte du Puy) grown (1) in microgravity, (2) on a 1 g centrifuge in space, (3) in microgravity and then placed on the 1 g centrifuge for 3 h, (4) on the ground. Dry seeds were hydrated in space (except for the ground control) and incubated for 25 h at 22°C in darkness. At the end of the experiment, the seedlings were photographed and fixed in glutaraldehyde in a Biorack glove box. Root length was similar for seedlings grown in space and for the ground and the 1 g centrifuge controls. The direction of root growth in the microgravity sample deviated strongly from the initial orientation of the roots of the dry seeds. This deviation could be due to spontaneous curvatures similar to those observed on clinostats. When lentil seedlings were first grown in microgravity for 25 h and then placed on the 1 g centrifuge for 3 h, their roots bent strongly under the effect of the centrifugal acceleration. The amplitude of root curvature on the centrifuge was not significantly different from that observed on ground controls growing in the vertical position and placed in the horizontal position for 3 h. The gravisensitivity of statocytes differentiated in microgravity was similar to that of statocytes differentiated on earth. There were no qualitative differences in the ultrastructural features of the gravisensing cells in microgravity and in the 1 g centrifuge and ground controls. However, the distribution of statoliths in the gravisensing cells was different in microgravity: most of them were observed in the proximal part of these cells. Thus, these organelles were not distributed at random, which is in contradiction with results obtained with clinostats. The distal complex of endoplasmic reticulum in the statocytes was not in contact with the amyloplasts. Contact and pressure of amyloplasts on the tubules were not prerequisites for gravisensing. The results obtained are not in agreement with the hypothesis that the distal endoplasmic reticulum would be the transducer of the action of the statoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号