首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The idiotypic determinants have been precisely located to the variable regions of immunoglobulin polypeptide chains. Both chains are generally required to express the idiotype. The major idiotypic determinants are the result of the amino acid sequence of the hypervaiable regions, although some idiotypic determinants reside outside the antibody combining site and these so called "framework idiotypes" are important markers. In my view the hypervariable regions are spatially disposed so as to present adequate antigenic stimulation, and they display enough structural heterogeneity to account for the uniqueness of the idiotype in the general population of immunoglobulin molecules. Hypervariable regions, the antibody combining site, and the idiotypic determinants thus amalgamate three formerly diverse concepts into a unified theoretical construct.  相似文献   

2.
Immunoglobulins bind antigens and express individual antigenic specificities mainly through residues located in hypervariable loops of their N-terminal domains. Hypervariable loops are kept in place by a molecular scaffold organized in a sandwich-like structure with two beta-sheets stabilized by a disulfide bridge (the immunoglobulin fold). This structural feature, together with the possibility of obtaining high level expression, extracellular secretion, easy purification and stability of the protein product, render immunoglobulin an ideal 'molecular vehicle' for the expression of exogenous peptides. Here we report on the engineering of an immunoglobulin expressing an exogenous epitope, the repetitive tetrapeptide Asn-Ala-Asn-Pro (NANP)3. By recombinant DNA techniques, we inserted three copies of the tetrapeptide (NANP)3 in the third hypervariable loop (D region) of an immunoglobulin heavy chain variable domain. We show that the engineered antibody was properly assembled and secreted. A panel of polyclonal and monoclonal antibodies, including anti-synthetic peptides and anti-(NANP)n antibodies, were used to study the molecular configuration of the engineered domain's surface. The results indicate that (i) the exogenous sequence did not appreciably alter the overall fold of the variable domain; and (ii) the inserted epitope folded with a configuration immunologically similar to the one assumed in the native protein, suggesting that short- and medium- rather than long-range interactions stabilized the structure of the (NANP)3 peptide in the folded protein. We propose this system for the expression of peptidic sequences, and their structural and functional analysis.  相似文献   

3.
Genetic variation during the course of infection of an individual is a remarkable feature of the acquired immune deficiency syndrome (AIDS) disease. This variation has been studied for the envelope protein encoding regions of seventeen different sequences from various isolates of human immunodeficiency virus (HIV) using multiple sequence comparison and calculation of variability. The open regions with little intramolecular base pairing in these envelope sequences are predicted by a recently developed statistical method. The minimum length L for a run of hypervariable sites, conserved sites, or open regions that gives significance at the 1% (or 0.1%) level is then determined by a scan statistical method. The results show that significant clusters of open regions predicted at the RNA levels correlate with significant clusters of hypervariable sites in the HIV envelope gene. Those significant genomic variations in HIVs seem to be manifested mainly in the extracellular portion of the envelope protein. Twelve potential antigenic determinants are predicted using an antigenic index method. Interestingly, the majority of the significant hypervariable regions in the exterior envelope protein (gp120) were predicted potential epitopes.  相似文献   

4.
Feline calicivirus (FCV) strains can show significant antigenic variation when tested for cross-reactivity with antisera produced against other FCV strains. Previous work has demonstrated the presence of hypervariable amino acid sequences in the capsid protein of FCV (designated regions C and E) that were postulated to constitute the major antigenic determinants of the virus. To examine the involvement of hypervariable sequences in determining the antigenic phenotype, the nucleotide sequences encoding the E regions from three antigenically distinct parental FCV strains (CFI, KCD, and NADC) were exchanged for the equivalent sequences in an FCV Urbana strain infectious cDNA clone. Two of the three constructs were recovered as viable, chimeric viruses. In six additional constructs, of which three were recovered as viable virus, the E region from the parental viruses was divided into left (N-terminal) and right (C-terminal) halves and engineered into the infectious clone. A final viable construct contained the C, D, and E regions of the NADC parental strain. Recovered chimeric viruses showed considerable antigenic variation from the parental viruses when tested against parental hyperimmune serum. No domain exchange was able to confer complete recognition by parental antiserum with the exception of the KCD E region exchange, which was neutralized at a near-homologous titer with KCD antiserum. These data demonstrate that it is possible to recover engineered chimeric FCV strains that possess altered antigenic characteristics. Furthermore, the E hypervariable region of the capsid protein appears to play a major role in the formation of the antigenic structure of the virion where conformational epitopes may be more important than linear in viral neutralization.  相似文献   

5.
To increase our understanding of the molecular basis for antibody specificity and for the cross-reactivity of antipeptide antibodies with native proteins, it is important to study the three-dimensional structure of antibody complexes with their peptide antigens. For this purpose it may not be necessary to solve the structure of the whole antibody complex but rather to concentrate on elucidating the combining site structure, the interactions of the antibody with its antigen, and the bound peptide conformation. To extract the information about antibody–peptide interactions and intramolecular interactions in the bound ligand from the complicated and unresolved spectrum of the Fab–peptide complex (Fab: antibody fragment made of Fv—the antibody fragment composed of the variable regions of the light and heavy chains forming a single combining site for the antigen—the light chain, and the first heavy chain constant regions), an nmr methodology based on measurements of two-dimensional transferred nuclear Overhauser effect (NOE) difference spectra was developed. Using this methodology the interactions of three monoclonal antibodies with a cholera toxin peptide were studied. The observed interactions were assigned to the antibody protons involved by specific deuteration of aromatic amino acids and specific chain labeling, and by using a predicted model for the structure of the antibody combining site. The assigned NOE interactions were translated to restraints on interproton distances in the complex that were used to dock the peptide into calculated models for the antibodies combining sites. Comparison of the interactions of three antibodies against a cholera toxin peptide (CTP3). which differ in their cross-reactivity with the toxin, yields information about the size and conformation of antigenic determinants recognized by the antibodies, the structure of their combining sites, and relationships between antibodies' primary structure and their interactions with peptide antigens. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The amino acid sequences of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) have recently deduced but their three-dimensional structures were not known. These sequences were analyzed using the servers 3D-PSSM and PredPort. The YPS and YPT porins were shown to have a high degree of identity (above 50%) in primary and secondary structures. The three-dimensional models of the Yersinia pseudotuberculosis porin (YPS) and Y. pestis porin (YPT) were obtained using the homology modeling approach, SWISS-MODEL Protein Modeling Server and 3-D structure of PhoE porin from E. coli as template. The superposition of the Calpha-atoms of the monomers of the Yersinia porins and PhoE porin gave a root mean square deviations of 0.47 A and 0.43 A for YPS and YPT respectively. Yersinia porins were found to be very similar in their three-dimensional structure to other non-specific enterobacterial porins, having the same features of overall fold and disposition of loop L3. The intrinsic structures of the monomer pores of YPS and YPT were investigated and their conductances were predicted with the program HOLE. The good correspondence between the theoretical and experimental magnitudes of YPS conductance was found. The Yersinia porins were determined to be unusual in containing the substitution, Glu replaced by Val, in a highly conserved pentapeptide (Pro-Glu-Phe-Gly-Gly-Asp), located in the loop L3 tip that disturbs the functionally important cluster of the acidic amino acids in the constriction site. Comparative analysis of structural organization of YPS and E. coli OmpF porin in the regions involved in subunit association and pore lumen was performed. The YPS porin functional properties were predicted. The differences between these porins in polar interactions playing a significant role in stabilization of the porin trimers were found and discussed in term of the variations in trimer stability. The Yersinia porins were shown to have the highest degree of the structural similarity. The differences between the porins were observed in their external loops. Their loops L6 and loops L8 showed 71.4 and 52.9% of sequence identity, respectively. The arrangement of charged residues clustered in the channel external vestibule of these porins was found to be also different suggesting the possible differences in their functional properties. The surface exposed regions of Yersinia porins involved in their potential sequential antigenic determinants were compared. The structural basis of their cross reactivity and antigenic differences is discussed.  相似文献   

7.
The complete amino acid sequence of the variable regions of light chains derived from anti-p-azophenylarsonate antibodies from A/J mice bearing a cross-reactive idiotype is reported. At least two and probably more than three distinct light chains are associated with this idiotypically characterized antibody. The antibodies have several differences in their "framework" structures but evidence is presented indicating that all three light chain hypervariable regions have a homogeneous sequence. The data are discussed in relation to the various theories of antibody diversity. In addition, the findings support the view that hypervariable regions, idiotypic determinants, and the antibody-combining site involve, to a large extent, the same molecular structures.  相似文献   

8.
The influence of genetic manipulation of the structural genes coding for major P-fimbrial subunits on the formation of fimbriae in Escherichia coli was studied. Deletion of two regions that code for hypervariable parts of the P fimbrillin resulted in strong reduction or total absence of fimbria production. Replacement of deleted amino acids by other amino acid residues restored the formation of fimbriae. The hypervariable regions may be important for biogenesis of fimbriae by imposing correct spacing between conserved regions of the protein. The potential for substituting amino acids in the P-fimbrial subunit opens interesting possibilities for use of fimbriae as carriers of foreign antigenic determinants. An antigenic determinant of foot-and-mouth disease virus (FMDV) was incorporated in the F11 fimbrial subunit. Hybrid fimbriae, recognized by an FMDV-specific neutralizing monoclonal antibody directed against FMDV, were formed.  相似文献   

9.
Canonical structures for the hypervariable regions of immunoglobulins   总被引:61,自引:0,他引:61  
We have analysed the atomic structures of Fab and VL fragments of immunoglobulins to determine the relationship between their amino acid sequences and the three-dimensional structures of their antigen binding sites. We identify the relatively few residues that, through their packing, hydrogen bonding or the ability to assume unusual phi, psi or omega conformations, are primarily responsible for the main-chain conformations of the hypervariable regions. These residues are found to occur at sites within the hypervariable regions and in the conserved beta-sheet framework. Examination of the sequences of immunoglobulins of unknown structure shows that many have hypervariable regions that are similar in size to one of the known structures and contain identical residues at the sites responsible for the observed conformation. This implies that these hypervariable regions have conformations close to those in the known structures. For five of the hypervariable regions, the repertoire of conformations appears to be limited to a relatively small number of discrete structural classes. We call the commonly occurring main-chain conformations of the hypervariable regions "canonical structures". The accuracy of the analysis is being tested and refined by the prediction of immunoglobulin structures prior to their experimental determination.  相似文献   

10.
Tetraspanins are a superfamily of transmembrane proteins implicated in cellular development, motility, and activation through their interactions with a large range of proteins and with specific membrane microdomains. The complete three-dimensional structure of the tetraspanin CD81 has been predicted by molecular modeling and from the crystallographic structure of the EC2 large extracellular domain. Periodicity of sequence conservation, homology modeling, secondary structure prediction, and protein docking were used. The transmembrane domain appears organized as a four-stranded left-handed coiled coil directly connecting to two helices of the EC2. A smaller extracellular loop EC1 contains a small largely hydrophobic beta-strand that packs in a conserved hydrophobic groove of the EC2. The palmitoylable intracellular N-terminal segment forms an amphipathic membrane-parallel helix. Structural variability occurs mainly in an hypervariable subdomain of the EC2 and in intracellular regions. Therefore, the variable interaction selectivity of tetraspanins originates both from sequence variability within structurally conserved domains and from the occurrence of small structurally variable domains. In CD81 and other tetraspanins, the numerous membrane-exposed aromatic residues are asymmetrically clustered and protrude on one side of the transmembrane domain. This may represent a functional specialization of these two sides for interactions with cholesterol, proteins, or membrane microdomains.  相似文献   

11.
A competitive radioimmunoassay was used to determine the reactivities of alpha-crystallins from 13 species with antibodies directed toward calf alpha-crystallin. The results indicate that species as diverse as human and dogfish share the same number of crossreacting antigenic determinants. The various alpha-crystallins can be distinguished only on the basis of their differing affinities for the antiserum. Hydrophilicity profiles for alpha A and alpha B polypeptides of all species were found to be remarkably similar. On the basis of these, four major sequential determinants could be predicted for each polypeptide. The location and sequence of these determinants were found to be essentially conserved in all alpha-crystallins examined. These results are in agreement with the observed crossreactivities. However, there was little obvious correlation between substitutions in determinants and observed variations in respective alpha-crystallin/antibody affinities. Conservation of antigenic determinants over such a wide evolutionary range may reflect stringent constraints on the overall surface and three-dimensional structure of vertebrate alpha-crystallins.  相似文献   

12.
Location of antigenic epitopes on antibody molecules   总被引:7,自引:0,他引:7  
Using X-ray crystallographic co-ordinates of immunoglobulins, surface regions accessible to a large spherical probe, comparable in size to an antibody domain, were computed. Locations of these exposed regions were compared with those of experimentally determined antigenic sites, i.e. idiotypic, allotypic and isotypic serological markers. In all cases, an excellent agreement was found. The most prominent computed epitopes correspond to convex parts of antibody surface made by reverse turn segments of the polypeptide chain. The computed epitopes occur in homologous positions in all the immunoglobulin domains, and most of the beta-sheet surfaces on the domains are poorly antigenic. The CH2 domain (Fc fragment) has many more antigenic sites than the Fab fragments (antigen-binding fragments). Variable domain epitopes (idiotypes) involve both hypervariable and framework residues, and only about 25% of the hypervariable residues are strongly antigenic. The results indicate that, in a vertebrate body, each antibody molecule may be recognized, and its concentration regulated, by at least 40 complementary anti-immunoglobulin antibodies; therefore, a possibility of an "immune network" with much higher connectivity than is generally assumed should be seriously contemplated.  相似文献   

13.
Bordetella pertussis strains contain at least three distinct genes coding for fimbrial subunits, designated fim2, fim3, and fimX. The sequences of the fim2 and fimX genes have been published. Here we present the sequence of the fim3 gene. Proximal and distal to the fim3 gene, regions were observed that could function as rho-independent terminators, suggesting that the gene is not part of a larger operon. Comparison of the putative promoter regions of the fim2 and fim3 genes revealed a conserved region containing a stretch of approximately 13 C's. This region may be involved in fimbrial phase variation. A comparison of the deduced amino acid sequences of the three fimbrial subunits revealed conserved, variable, and hypervariable regions. The hypervariable regions coincided with predicted antigenic determinants. Peptides derived from the conserved regions may be incorporated into a future pertussis vaccine to induce antibodies which confer protection against strains producing different fimbrial serotypes.  相似文献   

14.
Studies were undertaken to detect structural similarities between immunoglobulins and other proteins that bind to choline-containing ligands. Such proteins may share serologically detectable determinants that may not be predicted from the amino acid sequence alone. A monoclonal antibody was used that recognizes an idiotope near the phosphorylcholine binding site of the IgA myeloma TEPC15. This monoclonal anti-TEPC15 idiotopic antibody (anti-Id) also bound the enzyme acetylcholinesterase (AChE) as well as the nicotinic acetylcholine receptor from Torpedo californica. The anti-Id antibody also significantly decreased the AChE catalytic activity but did not affect the activity of an unrelated enzyme, horseradish peroxidase. These findings suggest that nonimmunoglobulin molecules share antigenic determinants with immunoglobulin that are associated with binding to structurally related ligands, and immune regulation may inadvertently affect the function of nonimmune systems.  相似文献   

15.
Models of the antigen combining sites of three monoclonal antibodies, which recognise different but overlapping epitopes within the 'loop' region of hen egg lysozyme (HEL), have been generated from the cDNA sequences of their Fv regions (the VL and VH domains) and the known crystal structures of immunoglobulin fragments. The alpha-carbon backbone of the structurally conserved framework region has been derived from the IgG myeloma protein NEW, and models for the hypervariable loop regions have been selected on the basis of length and maximum sequence homology. The model structures have been refined by energy minimisation. Both the size and chemical nature of the predicted combining site models correlate broadly with the epitope boundaries previously determined by affinity studies. A model of the complex formed between one antibody and the corresponding lysozyme epitope is described, and contact residues are identified for subsequent testing by oligonucleotide-directed site-specific mutagenesis.  相似文献   

16.
SARS冠状病毒M蛋白的生物信息学研究   总被引:2,自引:0,他引:2  
针对GenBank上发布的来自不同国家地区的39条SARSCoV推测M蛋白,采用生物信息学软件分析其核酸和氨基酸序列,获得其分子生物学特征,确定突变位点,预测功能结构区、Motif及抗原决定簇,比较基因突变对这些功能结构的影响.结果表明:在39个病毒株M蛋白的666 bp中,共有18个病毒株在7个位点上发生了25次变异.在M蛋白序列上预测获得3个跨膜螺旋序列和一个可能的信号肽序列.氨基酸序列的变异主要发生在其跨膜和胞外区域,胞内区域相对较少.预测发现12个Motif和7个抗原决定簇.提示突变对M蛋白的结构功能区的影响不大,也未造成M蛋白的Motif的数量和构成发生改变.对抗原决定簇的影响也主要体现在序列成分构成的改变上,在设计疫苗时,应考虑由其导致的抗原特性改变.  相似文献   

17.
A knowledge-based three-dimensional model of an anti-insulin antibody, 125, was constructed using the structures of conserved residues found in other known crystallographic immunoglobulins. Molecular modeling and mechanics were done with the 125 amino acid sequences using QUANTA and CHARMm on a Silicon Graphics 4D70GT workstation. A minimal model was made by scaffolding using crystallography coordinates of the antibody HyHEL-5, because it had the highest amino acid sequence homology with 125 (84% light chain, 65% heavy chain). The three hypervariable loop turns that are longer in 125 than in HyHEL-5 (L1, L3, and H3) were modeled separately and incorporated into the HyHEL-5 structure; then other amino acid substitutions were made and torsions optimized. The 125 model maintains all the structural attributes of an antibody and the structures conserved in known antibodies. Although there are many polar amino acids (especially serines) in this site, the overall van der Waals surface shape is determined by positions of aromatic side chains. Based on this model, it is suggested that hydrogen bonding may be key in the interaction between the human insulin A chain loop antigenic epitope and 125.  相似文献   

18.
Entamoeba histolytica: specific antigen recognized by a monoclonal antibody   总被引:2,自引:0,他引:2  
Specific antigenic determinants on the membrane surface of Entamoeba histolytica that distinguish it from other Entamoeba species were demonstrated. Evidence for these antigenic determinants was obtained with a monoclonal antibody to E. histolytica which showed not only specificity but also sensitivity as demonstrated in enzyme linked immunosorbent assay. Immunofluorescence microscopy showed that the monoclonal antibody recognized an epitope present on the membrane surface of E. histolytica trophozoites. The epitope detected by the monoclonal antibody was present in three components of different molecular weight. These components may have a common precursor or may be the result of enzymatic degradation under the conditions tested.  相似文献   

19.
Expression of Neisseria gonorrhoeae Protein II (P.II) is subject to phase variation and antigenic variation. The P.II proteins made by one strain possess both unique and conserved antigenic determinants. To study the mechanism of antigenic variation, we cloned several P.II genes, using as probes a panel of monoclonal antibodies (MAbs) specific for unique determinants. The DNA sequences of three P.II genes showed that they shared a conserved framework, with two short hypervariable (HV) regions being responsible for most of the differences among them. We demonstrated that unique epitopes recognized by the MAbs were at least partially encoded by one of the HV regions. Moreover, we found that reassortment of the two HV regions among P.II genes occurs, generating increased structural and antigenic variability in the P.II protein family.  相似文献   

20.
Monoclonal antibodies of high affinity (approximately 10(9) M-1) for sperm whale myoglobin were studied to pinpoint the antigenic determinants with which they interact. None of 6 different monoclonal antibodies tested reacted with any of the 3 CNBr cleavage fragments which encompass the whole sequence of myoglobin, an indication that they react with determinants present only on the native structure. To identify these sites, we compared the affinities of each antibody for a series of 14 mammalian myoglobins of known sequence and similar tertiary structure. Correlation of sequence differences with relative affinities allowed us, thus far, to identify critical antigenic residues recognized by 3 of the antibodies. Two of these antibodies recognize groups of residues which are far apart in primary structure but close together in the 3-dimensional structure of the native myoglobin molecule, i.e. topographic determinants. The third antibody distinguishes 140 Lys leads to Asn plus, probably, surface residues nearby. These determinants differ from previously reported antigenic sites on sperm whale myoglobin both in that they are topographic, rather than sequential, and in that almost all the critical residues recognized by these antibodies are outside the previously reported sites. Monoclonal antibodies are sensitive to subtle changes, e.g. Glu leads to Asp, in the antigenic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号