首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Mg(2+) -Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+) -transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+) -binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+) -binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+) -binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.  相似文献   

4.
5.
6.
7.
8.
9.
10.
We isolated mitochondria from Saccharomyces cerevisiae to selectively study polysomes bound to the mitochondrial surface. The distribution of several mRNAs coding for mitochondrial proteins was examined in free and mitochondrion-bound polysomes. Some mRNAs exclusively localize to mitochondrion-bound polysomes, such as the ones coding for Atm1p, Cox10p, Tim44p, Atp2p, and Cot1p. In contrast, mRNAs encoding Cox6p, Cox5a, Aac1p, and Mir1p are found enriched in free cytoplasmic polysome fractions. Aac1p and Mir1p are transporters that lack cleavable presequences. Sequences required for mRNA asymmetric subcellular distribution were determined by analyzing the localization of reporter mRNAs containing the presequence coding region and/or the 3'-untranslated region (3'UTR) of ATM1, a gene encoding an ABC transporter of the mitochondrial inner membrane. Biochemical analyses of mitochondrion-bound polysomes and direct visualization of RNA localization in living yeast cells allowed us to demonstrate that either the presequence coding region or the 3'UTR of ATM1 is sufficient to allow the reporter mRNA to localize to the vicinity of the mitochondrion, independently of its translation. These data demonstrate that mRNA localization is one of the mechanisms used, in yeast, for segregating mitochondrial proteins.  相似文献   

11.
12.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

13.
14.
15.
RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg(2+) also affected the melting point of the fourU thermometer. Variations of the Mg(2+) concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg(2+) binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg(2+) binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg(2+) ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values ΔG for Mg(2+) binding determined by NMR are in agreement with data determined from CD measurements.  相似文献   

16.
17.
The 5'-untranslated region (5'UTR) of the fliC flagellin gene of Salmonella contains sequences critical for efficient fliC mRNA translation coupled to assembly. In a previous study we used targeted mutagenesis of the 5' end of the fliC gene to isolate single base changes defective in fliC gene translation. This identified a predicted stem-loop structure, SL2, as an effector of normal fliC mRNA translation. A single base change (-38C:U) in the fliC 5'UTR resulted in a mutant that is defective in fliC mRNA translation and was chosen for this study. Motile (Mot+) revertants of the -38C:T mutant were isolated and characterized, yielding several unexpected results. Second-site suppressors that restored fliC translation and motility included mutations that disrupt a RNA duplex stem formed between RNA sequences in the fliC 5'UTR SL2 region (including a precise deletion of SL2) and bases early within the fliC-coding region. A stop codon mutation at position 80 of flgM also suppressed the -38C:T motility defect, while flgM mutants defective in anti-sigma28 activity had no effect on fliC translation. One remarkable mutation in the fliC 5'UTR (-15G:A) results in a translation defect by itself but, in combination with the -38C:U mutation, restores normal translation. These results suggests signals intrinsic to the fliC mRNA that have both positive and negative effects on fliC translation involving both RNA structure and interacting proteins.  相似文献   

18.
19.
Wang L  Jeng KS  Lai MM 《Journal of virology》2011,85(16):7954-7964
Sequences in the 5' untranslated region (5'UTR) of hepatitis C virus (HCV) RNA is important for modulating both translation and RNA replication. The translation of the HCV genome depends on an internal ribosome entry site (IRES) located within the 341-nucleotide 5'UTR, while RNA replication requires a smaller region. A question arises whether the replication and translation functions require different regions of the 5'UTR and different sets of RNA-binding proteins. Here, we showed that the 5'-most 157 nucleotides of HCV RNA is the minimum 5'UTR for RNA replication, and it partially overlaps with the IRES. Stem-loops 1 and 2 of the 5'UTR are essential for RNA replication, whereas stem-loop 1 is not required for translation. We also found that poly(C)-binding protein 2 (PCBP2) bound to the replication region of the 5'UTR and associated with detergent-resistant membrane fractions, which are the sites of the HCV replication complex. The knockdown of PCBP2 by short hairpin RNA decreased the amounts of HCV RNA and nonstructural proteins. Antibody-mediated blocking of PCBP2 reduced HCV RNA replication in vitro, indicating that PCBP2 is directly involved in HCV RNA replication. Furthermore, PCBP2 knockdown reduced IRES-dependent translation preferentially from a dual reporter plasmid, suggesting that PCBP2 also regulated IRES activity. These findings indicate that PCBP2 participates in both HCV RNA replication and translation. Moreover, PCBP2 interacts with HCV 5'- and 3'UTR RNA fragments to form an RNA-protein complex and induces the circularization of HCV RNA, as revealed by electron microscopy. This study thus demonstrates the mechanism of the participation of PCBP2 in HCV translation and replication and provides physical evidence for HCV RNA circularization through 5'- and 3'UTR interaction.  相似文献   

20.
At the 5' and 3' end of genomic HCV RNA there are two highly conserved, untranslated regions, 5'UTR and 3'UTR. These regions are organized into spatially ordered structures and they play key functions in regulation of processes of the viral life cycle. Most nucleotides of the region located at the 5' side of the coding sequence serve as an internal ribosomal entry site, IRES, which directs cap-independent translation. The RNA fragment present at the 3' end of the genome is required for virus replication and probably contributes to translation of viral proteins. During virus replication its genomic strand is transcribed into a strand of minus polarity, the replicative strand. Its 3' terminus is responsible for initiation of synthesis of descendant genomic strands. This article summarizes our current knowledge on the structure and function of the non-coding regions of hepatitis C genomic RNA, 5'UTR and 3'UTR, and the complementary sequences of the replicative viral strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号