首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthomonas citri pv. citri is a clonal group of strains that causes citrus canker disease and appears to have originated in Asia. A phylogenetically distinct clonal group that causes identical disease symptoms on susceptible citrus, X. citri pv. aurantifolii, arose more recently in South America. Genomes of X. citri pv. aurantifolii strains carry two DNA fragments that hybridize to pthA, an X. citri pv. citri gene which encodes a major type III pathogenicity effector protein that is absolutely required to cause citrus canker. Marker interruption mutagenesis and complementation revealed that X. citri pv. aurantifolii strain B69 carried one functional pthA homolog, designated pthB, that was required to cause cankers on citrus. Gene pthB was found among 38 open reading frames on a 37,106-bp plasmid, designated pXcB, which was sequenced and annotated. No additional pathogenicity effectors were found on pXcB, but 11 out of 38 open reading frames appeared to encode a type IV transfer system. pXcB transferred horizontally in planta, without added selection, from B69 to a nonpathogenic X. citri pv. citri (pthA::Tn5) mutant strain, fully restoring canker. In planta transfer efficiencies were very high (>0.1%/recipient) and equivalent to those observed for agar medium with antibiotic selection, indicating that pthB conferred a strong selective advantage to the recipient strain. A single pathogenicity effector that can confer a distinct selective advantage in planta may both facilitate plasmid survival following horizontal gene transfer and account for the origination of phylogenetically distinct groups of strains causing identical disease symptoms.  相似文献   

2.
Citrus canker disease is caused by five groups of Xanthomonas citri strains that are distinguished primarily by host range: three from Asia (A, A*, and A(w)) and two that form a phylogenetically distinct clade and originated in South America (B and C). Every X. citri strain carries multiple DNA fragments that hybridize with pthA, which is essential for the pathogenicity of wide-host-range X. citri group A strain 3213. DNA fragments that hybridized with pthA were cloned from a representative strain from all five groups. Each strain carried one and only one pthA homolog that functionally complemented a knockout mutation of pthA in 3213. Every complementing homolog was of identical size to pthA and carried 17.5 nearly identical, direct tandem repeats, including three new genes from narrow-host-range groups C (pthC), A(w) (pthAW), and A* (pthA*). Every noncomplementing paralog was of a different size; one of these was sequenced from group A* (pthA*-2) and was found to have an intact promoter and full-length reading frame but with 15.5 repeats. None of the complementing homologs nor any of the noncomplementing paralogs conferred avirulence to 3213 on grapefruit or suppressed avirulence of a group A* strain on grapefruit. A knockout mutation of pthC in a group C strain resulted in loss of pathogenicity on lime, but the strain was unaffected in ability to elicit an HR on grapefruit. This pthC- mutant was fully complemented by pthA, pthB, or pthC. Analysis of the predicted amino-acid sequences of all functional pthA homologs and nonfunctional paralogs indicated that the specific sequence of the 17th repeat may be essential for pathogenicity of X. citri on citrus.  相似文献   

3.
The pathogenicity gene, pthA, of Xanthomonas citri is required to elicit symptoms of Asiatic citrus canker disease; introduction of pthA into Xanthomonas strains that are mildly pathogenic or opportunistic on citrus confers the ability to induce cankers on citrus (S. Swarup, R. De Feyter, R. H. Brlansky, and D. W. Gabriel, Phytopathology 81:802-809, 1991). The structure and the function of pthA in other xanthomonads and in X. citri were further investigated. When pthA was introduced into strains of X. phaseoli and X. campestris pv. malvacearum (neither pathogenic to citrus), the transconjugants remained nonpathogenic to citrus and elicited a hypersensitive response (HR) on their respective hosts, bean and cotton. In X. c. pv. malvacearum, pthA conferred cultivar-specific avirulence. Structurally, pthA is highly similar to avrBs3 and avrBsP from X. c. pv. vesicatoria and to avrB4, avrb6, avrb7, avrBIn, avrB101, and avrB102 from X. c. pv. malvacearum. Surprisingly, marker-exchanged pthA::Tn5-gusA mutant B21.2 of X. citri specifically lost the ability to induce the nonhost HR on bean, but retained the ability to induce the nonhost HR on cotton. The loss of the ability of B21.2 to elicit an HR on bean was restored by introduction of cloned pthA, indicating that the genetics of the nonhost HR may be the same as that found in homologous interactions involving specific avr genes. In contrast with expectations of homologous HR reactions, however, elimination of pthA function (resulting in loss of HR) did not result in water-soaking or even moderate levels of growth in planta of X. citri on bean; the nonhost HR, therefore, may not be responsible for the "resistance" of bean to X. citri and may not limit the host range of X. citri on bean. The pleiotropic avirulence function of pthA and the heterologous HR of bean to X. citri are both evidently gratuitous.  相似文献   

4.
Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.  相似文献   

5.
We provide the first conclusive evidence that Xanthomonas axonopodis pv. citri Asiatic strain (Xac-A) and, in particular, Xac-Aw, a unique citrus canker A strain isolated from Key lime in Wellington, Florida, induces a hypersensitive reaction (HR) in grapefruit leaves. Using the heterologous tomato pathogen X. perforans , as a recipient of the Xac-Aw genomic library, we identified a 1599-bp open reading frame responsible for HR in grapefruit, but not Key lime, and designated it avrGf 1. Xac-AwΔ avrGf 1 produced typical, although visibly reduced, citrus canker symptoms (i.e. raised pustules) in grapefruit and typical canker symptoms in Key lime. We also determined that the X. perforans transconjugant carrying an Xac-Aw hrpG elicited HR in grapefruit and Key lime leaves, and that xopA in X. perforans was partly responsible for HR. Xac-A transconjugants carrying the X. perforans xopA were reduced in ability to grow in grapefruit leaves relative to wild-type Xac-A. The X. perforans xopA appears to be a host-limiting factor. An avrBs3 homologue, which contained 18.5 repeats and induced HR in tomato, was designated avrTaw . This gene, when expressed in a pustule-minus Xac-Aw, did not complement pustule formation; however, pthAw , a functional pthA homologue, complemented the mutant strain to produce typical pustules in Key lime, but markedly reduced pustules in grapefruit. Both avrBs3 homologues, when expressed in a typical Xac-A strain, resulted in typical citrus canker pustules in grapefruit, indicating that neither homologue suppressed pustule size in grapefruit. Xac-Aw contains other unidentified factors that suppress development in grapefruit.  相似文献   

6.
Metabolic fingerprints of 148 strains of Xanthomonas campestris pv. citri originating from 24 countries and associated with various forms of citrus bacterial canker disease (CBCD) were obtained by using the Biolog substrate utilization system. Metabolic profiles were used to attempt strain identification. Only 6.8% of the studied strains were correctly identified when the commercial Microlog 2N data base was used alone. When the data base was supplemented with data from 54 strains of X. campestris pv. citri (40 CBCD-A strains, 8 CBCD-B strains, and 6 CBCD-C strains) and data from 43 strains of X. campestris associated with citrus bacterial spot disease, the percentage of correct identifications was 70%. Thus, it is recommended that users supplement the commercial data base with additional data prior to using the program for identification purposes. The utilization of Tween 40 in conjunction with other tests can help to differentiate strains associated with CBCD and citrus bacterial spot disease. These results confirmed the separation of X. campestris pv. citri into different subgroups (strains associated with Asiatic citrus canker [CBCD-A], cancrosis B [CBCD-B], and Mexican lime canker [CBCD-C]). The utilization of l-fucose, d-galactose, and alaninamide can be used as markers to differentiate strains associated with these groups. A single strain associated with bacteriosis of Mexican lime in Mexico (CBCD-D) was closely similar to CBCD-B strains.  相似文献   

7.
The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.  相似文献   

8.
Xanthomonas axonopodis pv. citri is the causal agent of citrus canker, which is one of the most serious diseases of citrus. To understand the virulence mechanisms of X. axonopodis pv. citri, we designed and conducted genome-wide microarray analyses to characterize the HrpG and HrpX regulons, which are critical for the pathogenicity of X. axonopodis pv. citri. Our analyses revealed that 232 and 181 genes belonged to the HrpG and HrpX regulons, respectively. In total, 123 genes were overlapped in the two regulons at any of the three selected timepoints representing three growth stages of X. axonopodis pv. citri in XVM2 medium. Our results showed that HrpG and HrpX regulated all 24 type III secretion system genes, 23 type III secretion system effector genes, and 29 type II secretion system substrate genes. Our data revealed that X. axonopodis pv. citri regulates multiple cellular activities responding to the host environment, such as amino acid biosynthesis; oxidative phosphorylation; pentose-phosphate pathway; transport of sugar, iron, and potassium; and phenolic catabolism, through HrpX and HrpG. We found that 124 and 90 unknown genes were controlled by HrpG and HrpX, respectively. Our results suggest that HrpG and HrpX interplay with a global signaling network and co-ordinate the expression of multiple virulence factors for modification and adaption of host environment during X. axonopodis pv. citri infection.  相似文献   

9.
Strains of the plant-pathogenic bacterium Xanthomonas axonopodis pv. citri are differentiated into two groups with respect to aggressiveness (normal and weak) on Citrus grandis cultivars but not on other Citrus species such as Citrus sinensis. Random mutagenesis using the transposon Tn5 in X. axonopodis pv. citri strain KC21, which showed weak aggressiveness on a C. grandis cultivar, was used to isolate mutant KC21T46, which regained a normal level of aggressiveness on the cultivar. The gene inactivated by the transposon, hssB3.0, was shown to be responsible for the suppression of virulence on C. grandis. Sequence analysis revealed it to be a new member of the pthA homologs, which was almost identical in sequence to the other homologs except for the number of tandem repeats in the central region of the gene. hssB3.0 appears to be a chimera of other pthA homologs, pB3.1 and pB3.7, and could have been generated by recombination between these two genes. Importantly, in X. axonopodis pv. citri, hssB3.0 was found in all of the tested isolates belonging to the weakly aggressive group but not in the isolates of the normally aggressive group. Isolation of the virulence-deficient mutant KC21T14 from KC21, in which the pathogenicity gene pthA-KC21 was disrupted, showed that hssB3.0 induces a defense response on the host but partially interrupts canker development elicited by the pathogenicity gene in this bacterium.  相似文献   

10.
Xanthomonas campestris strains that cause disease in citrus were compared by restriction endonuclease analysis of DNA fragments separated by pulsed-field gel electrophoresis and by DNA reassociation. Strains of X. campestris pv. citrumelo, which cause citrus bacterial spot, were, on average, 88% related to each other by DNA reassociation, although these strains exhibited diverse restriction digest patterns. In contrast, strains of X. campestris pv. citri groups A and B, which cause canker A and canker B, respectively, had relatively homogeneous restriction digest patterns. The groups of strains causing these three different citrus diseases were examined by DNA reassociation and were found to be from 55 to 63% related to one another. Several pathovars of X. campestris, previously shown to cause weakly aggressive symptoms on citrus, ranged from 83 to 90% similar to X. campestris pv. citrumelo by DNA reassociation. The type strain of X. campestris pv. campestris ranged from 30 to 40% similar in DNA reassociation experiments to strains of X. campestris pv. citrumelo and X. campestris pv. citri groups A and B. Whereas DNA reassociation quantified the difference between relatively unrelated groups of bacterial strains, restriction endonuclease analysis distinguished between closely related strains.  相似文献   

11.
Partial sequence analysis of the ribosomal operon in Xanthomonas axonopodis allowed discrimination among strains causing the A, B, and C types of citrus bacterial canker (CBC) and quantification of the relationship of these organisms with other species and pathovars in the same genus. Sets of primers based on sequence differences in the internally transcribed spacer and on a sequence from the plasmid gene pthA involved in virulence were designed for specific identification of xanthomonads causing CBC diseases. The two sets were validated with a collection of Xanthomonas strains associated with citrus species. The primer set based on ribosomal sequences had a high level of specificity for X. axonopodis pv. citri, whereas the set based on the pthA gene was universal for all types of CBC organisms. Moreover, the relationships among worldwide Xanthomonas strains causing CBC were analyzed by amplification of repetitive sequences (enterobacterial repetitive intergenic consensus and BOX elements). Under specific conditions, pathotypes of these Xanthomonas strains could be discerned, and subgroups of the pathotypes were identified. Subgroups of strains were associated with certain geographic areas of the world, and on this basis the origin of type A strains introduced into Florida could be inferred.  相似文献   

12.
Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease.  相似文献   

13.
A mutant (XT906) of Xanthomonas campestris pv. citri, the causal agent of citrus canker, was induced by insertion of the transposon Tn5tac1 and isolated. This mutant did not grow or elicit canker disease in citrus leaves but was still able to induce a hypersensitive response in a nonhost plant (the common bean). The mutant was also unable to grow on minimal medium containing fructose or glycerol as the sole carbon source. A 2.5-kb fragment of wild-type DNA that complemented the mutant phenotype of XT906 was isolated. Sequence analysis revealed that this DNA fragment encoded a protein of 562 amino acids that shows homology to phosphoglucose isomerase (PGI). Enzyme activity assay confirmed that the encoded protein possesses PGI activity. Analysis of the activity of the promoter of the pgi gene revealed that it was inhibited by growth in complex medium but induced by culture in plant extract. These results demonstrate that PGI is required for pathogenicity of X. campestris pv. citri.  相似文献   

14.
15.
A sensitive and specific assay was developed to detect citrus bacterial canker caused by Xanthomonas axonopodis pv. citri, in leaves and fruits of citrus. Primers XACF and XACR from hrpW homologous to pectate lyase, modifying the structure of pectin in plants, were used to amplify a 561 bp DNA fragment. PCR technique was applied to detect the pathogen in naturally or artificially infected leaves of citrus. The PCR product was only produced from X. axonopodis pv. citri among 26 isolates of Xanthomonas strains, Escherichia coli (O157:H7), Pectobacterium carotovorum subsp. carotovorum, and other reference microbes.  相似文献   

16.
pFL1 is a pUC9 derivative that contains a 572-bp EcoRI insert cloned from plasmid DNA of Xanthomonas campestris pv. citri XC62. The nucleotide sequence of pFL1 was determined, and the sequence information was used to design primers for application of the polymerase chain reaction (PCR) to the detection of X. campestris pv. citri, the causal agent of citrus bacterial canker disease. Seven 18-bp oligonucleotide primers were designed and tested with DNA from X. campestris pv. citri strains and other strains of X. campestris associated with Citrus spp. as templates in the PCR. Four primer pairs directed the amplification of target DNA from X. campestris pv. citri strains but not from strains of X. campestris associated with a different disease, citrus bacterial spot. Primer pair 2-3 directed the specific amplification of target DNA from pathotype A but not other pathotypes of X. campestris pv. citri. A pH 9.0 buffer that contained 1% Triton X-100 and 0.1% gelatin was absolutely required for the successful amplification of the target DNA, which was 61% G+C. Limits of detection after amplification and gel electrophoresis were 25 pg of purified target DNA and about 10 cells when Southern blots were made after gel electrophoresis and probed with biotinylated pFL1. This level of detection represents an increase in sensitivity of about 100-fold over that of dot blotting with the same hybridization probe. PCR products of the expected sizes were amplified from DNA extracted from 7-month-old lesions from which viable bacteria could not be isolated. These products were confirmed to be specific for X. campestris pv. citri by Southern blotting. This PCR-based detection protocol will be a useful addition to current methods of detection of this pathogen, which is currently the target of international quarantine measures.  相似文献   

17.
Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cu(r)) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cu(r) bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥ 92%) among different Cu(r) bacteria.  相似文献   

18.
Gene pthA is required for virulence of Xanthomonas citri on citrus plants and has pleiotropic pathogenicity and avirulence functions when transferred to many different xanthomonads. DNA sequencing revealed that pthA belongs to a family of Xanthomonas avirulence/pathogenicity genes characterized by nearly identical 102-bp tandem repeats in the central region. By inserting an nptI-sac cartridge into the tandemly repeated region of pthA as a selective marker, intragenic recombination among homologous repeats was observed in both Xanthomonas spp. and Escherichia coli. Intragenic recombination within pthA created new genes with novel host specificities and altered pathogenicity and/or avirulence phenotypes. Many pthA recombinants gained or lost avirulence function in pathogenicity assays on bean, citrus, and cotton cultivars. Although the ability to induce cell division (hyperplastic cankers) on citrus could be lost, this ability was not acquired on cotton or bean plants. Intragenic recombination therefore provides a genetic mechanism for the generation of multiple, different, and gratuitous avirulence genes from a single, required, host-specific pathogenicity gene.  相似文献   

19.
20.
Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a devastating disease resulting in significant crop losses in various citrus cultivars worldwide. A biocontrol agent has not been recommended for this disease. To explore the potential of bacilli native to Taiwan to control this disease, Bacillus species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from plant potting mixes, organic compost and the rhizosphere soil. Seven strains TKS1-1, OF3-16, SP4-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development. The genetic identity based on 16S rDNA sequences indicated that all seven native strains were close relatives of the B. subtilis group and appeared to be discrete from the B. cereus group. DNA polymorphisms in strains WG6-14, SP4-17, TKS1-1, and WP8-12, as revealed by repetitive sequence-based PCR with the BOXA1R primers were similar to each other, but different from those of the respective Bacillus type strains. However, molecular typing of the strains using either tDNA-intergenic spacer regions or 16S-23S intergenic transcribed spacer regions was unable to differentiate the strains at the species level. Strains TKS1-1 and WG6-14 attenuated symptom development of citrus bacterial canker, which was found to be correlated with a reduction in colonization and biofilm formation by X. axonopodis pv. citri on leaf surfaces. The application of a Bacillus strain TKS1-1 endospore formulation to the leaf surfaces of citrus reduced the incidence of citrus bacterial canker and could prevent development of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号