首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swallowing of amniotic fluid and lung fluid inflow were eliminated in 10 chronically instrumented fetuses. The urachus was ligated, and fetal was urine drained to the outside. At the beginning and the end of 21 experiments of 66 +/- 5 (SE) h duration, all amniotic fluid was temporarily drained to the outside for volume measurement and sampling. Amniotic fluid osmolalities and oncotic pressures were experimentally controlled. Amniochorionic absorption of amniotic fluid depended strongly on the osmolality difference between amniotic fluid and fetal plasma (P < 0.001), but at zero osmolality difference there still was a mean absorption rate of 23.8 +/- 4.7 (SE) ml/h (P < 0.001). Absorption was unaffected by the protein concentration difference between amniotic fluid and fetal plasma, but infused bovine albumin in the amniotic fluid was absorbed at a rate of 1.8 8 +/- 0.4 g/h (P < 0.001), corresponding to a volume flow of fluid of 33.8 8 +/- 6.1 ml/h (P < 0.001). Fluid absorption in the amniochorion is driven in part by crystalloid osmotic pressure, but about 25 ml/h is absorbed by a path that is permeable to protein. That path has the physiological characteristics of lymphatic drainage, although no anatomic basis is known to exist for a lymphatic system in the amniochorion.  相似文献   

2.
Concentrations of prostaglandin E (PGE), prostaglandin F (PGF) and 13,14-dihydro-15-keto-prostaglandin F (PGFM) have been measured in fetal tracheal and amniotic fluid from chronically catheterized sheep during late pregnancy. Amniotic fluid contained significantly greater concentrations of these prostaglandins than tracheal fluid (p less than 0.01); there was no correlation between the level of prostaglandins found in each fluid. In tracheal fluid concentrations of PGE and PGFM exceeded those of PGF (P less than 0.01) whereas no significant differences were found in amniotic fluid. The levels of prostaglandins in these fluids were similar in ewes bearing hypophysectomized fetuses.  相似文献   

3.
Seven singleton 120-day fetal lambs were prepared with a shunt from the lung to the gastric end of the esophagus, a bladder catheter, and multiple amniotic fluid and vascular catheters. The urachus was ligated. Beginning 7 days later, amniotic fluid volumes were determined by drainage, followed by replacement with 1 liter of lactated Ringer (LR) solution. Urine flow into the amnion was measured continuously. In 14 of 27 experiments, amniotic fluid volumes were determined again 2 days after the inflow into the amnion had consisted of urine only and in 13 experiments after the inflow of urine had been supplemented by an intraamniotic infusion of LR solution. Intramembranous absorption was calculated from the inflows and the changes in volume between the beginning and end of each experiment. The relations between absorption rate and amniotic fluid volume, the "function curves," were highly individual. Urine production during the infusion of LR solution did not decrease, fetal plasma renin activity decreased (P < 0.001), and amniotic fluid volume increased by 140% [SE (27%), P < 0.005], but the increase in the amniochorionic absorption rate of 411% [SE (48%), P < 0.001] was greater (P < 0.005) than the increase in volume. Each of the seven fetuses was proven capable of an average intramembranous absorption rate that exceeded 4.5 liters of amniotic fluid per day. During the infusion of LR solution, the increase in the rate of absorption matched the rate of infusion (both in ml/h), with a regression coefficient of 0.75 (P < 0.001). Thus, even for large amniotic fluid volumes, volume is not limited by the absorptive capacity of the amniochorion, and, at least in these preparations, the position of the function curve and not the natural rate of inflow was the major determinant of resting amniotic fluid volume.  相似文献   

4.
To see if the variability in fetal urine flow and sodium excretion was related to fetal drinking activity, renal function was investigated in two groups of oesophageally-ligated fetuses and one group of non-ligated fetuses. There was no significant difference in urine flow, sodium excretion or glomerular filtration rate in the ligated fetuses compared with the non-ligated fetuses. Furthermore, oesophageal ligation had no effect on the variability in urine flow and sodium excretion rate. The response of fetal kidney to ingestion of fluid was investigaeed in 2 groups of oesophageally-ligated fetuses. In one group it was shown that ingestion of 20 ml/kg of amniotic fluid by the fetus had no consistent effect on fetal renal function. In the other group it was shown that the ingestion of 200 ml water also had no consistent effect on fetal renal function. The water load caused a rise in fetal blood pressure and a fall in plasma osmolality. Since there was no significant increase in free water clearance and fetal plasma osmolality decreased then rose towards control levels, it is concluded that the oral water load was absorbed from the fetal gastrointestinal tract and diffused out of the fetal compartment across the placenta. These experiments show that fetal drinking is probably not responsible for the variability often seen in fetal urine flow and sodium excretion rate.  相似文献   

5.
The concentration of thromboxane (TX) B-2 was similar in plasma from all sources but was significantly greater (P less than 0.01) in amniotic fluid. Fetal hypophysectomy was without effect on maternal or fetal levels of TXB-2 (P greater than 0.1). Neither normal parturition at term nor prematurely induced delivery was associated with any significant trend in TXB-2 levels. During late pregnancy (105--145 days of gestation) the concentrations of TXB-2 and 13, 14-dihydro-15-keto-prostaglandin F (PGFM) in maternal and fetal plasma were significantly correlated (P less than 0.001). There was, however, no correlation between TXB-2 and PGFM levels in samples taken during the 36 h before delivery. These data suggest that thromboxanes play little part in the mechanism of parturition in sheep.  相似文献   

6.
Amniotic fluid volume (AFV) and amniotic fluid ingestion rate (or fetal swallowing rate, FSR) were estimated by inulin and para-aminohippurate (PAH) dilution in 14 normal baboon pregnancies. Mean (± SE) AFV was significantly lower at 137–140 days of pregnancy (preterm) than at 173–178 days (term) (inulin: 326 ± 22.9 ml vs 483 ± 55.9 ml, P = 0.014; PHA:269 ± 39.4 ml vs 471 ± 39.4 ml, P = 0.002). In proportion to fetal weight, however, mean AFV was similar throughout the third trimester of pregnancy (inulin: 582 ± 40.9 ml/kg; PAH: 541 ± 39.8 ml/kg). Mean FSR was lower in preterm than in term animals when estimated by inulin dilution (587 ± 55.5 ml/day vs 784 ± 55.0 ml/day, P = 0.030) but not when estimated by PAH dilution (753 ± 65.7 ml/day vs 625 ± 50.6 ml/day). In proportion to their weights, however, preterm fetuses swallowed amniotic fluid more rapidly than term fetuses (inulin: 1,216 ± 117.6 ml/kg/day vs 840 ± 67.5 ml/kg/day, P = 0.025; PAH: 1,561 ± 142.9 ml/kg/day vs 682 ± 62.7 ml/kg/day, P < 0.001). Furthermore, our data suggest that the commonly accepted technique for estimating AFV may be based on inaccurate premises, that insulin may be a better marker than PAH to estimate AFV and FSR, and that needle aspiration of amniotic fluid does not appear to be an adequate technique to validate chemical dilution methods. Our data, however, provide estimates which indicate that the baboon is an appropriate animal model in which to seek refinements and validation of our techniques.  相似文献   

7.
Intestinal lactase activity (with its associated cellobiase, 4-methylumbelliferyl-beta-galactosidase and -beta-glucosidase activities) was used as a specific intestinal marker enzyme to study the release of protein and enzymes of intestinal origin in sheep amniotic fluid during gestation. In amniotic fluid, intestinal lactase activity peaked at 66--85 days of gestation and then decreased with gestation. This enzyme activity was very low or absent in allantoic fluid throughout gestation suggesting that there is no important transfer of amniotic fluid lactase towards the allantoic cavity. Maltase and 4-methylumbelliferyl-alpha-glucosidase showed no statistically significant variation with gestation in both amniotic and allantoic fluid whereas alpha-galactosidase and N-acetyl-beta-hexosaminidase which were first higher in allantoic than in amniotic fluid increased in amniotic fluid to reach allantoic fluid levels near term. Such patterns are consistent with the suggestion that the fetal urine is a source of alpha-galactosidase and N-acety-beta-hexosaminidase activities and that sheep urine is first accumulated in the allantoic sac via the urachus up to 86--90 days of gestation and thereafter passes more and more into the amniotic sac.  相似文献   

8.
Acid -glucosidase in amniotic fluid   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
Amniotic fluid (AF) contains a heterogeneous population of cells of fetal origin in which stem cells are present. These cells are characterized by the expression of mesenchymal (CD73, CD90, CD105) and neural (Nestin, β3-tubulin, NEFH) markers, and also some markers of pluripotency (Oct4, Nanog), and they are capable of differentiating into diverse derivatives in vitro. We have shown that epithelial markers (Keratin 19, Keratin 18, and p63) are expressed in AF stem cells simultaneously with mesenchymal ones. During cloning, colonies of cells with fibroblastoid and epithelioid cells are formed. The status and differentiation potential of stem cells from AF have been discussed.  相似文献   

16.
17.
18.
19.
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. In response to DSBs, cells initiate a complex response that minimizes their deleterious impact on cellular and organismal physiology. In this review, we discuss the discovery of a regulatory ubiquitylation system that modifies the chromatin that surrounds DNA lesions. This pathway is under the control of RNF8 and RNF168, two E3 ubiquitin ligases that cooperate with UBC13 to promote the relocalization of 53BP1 and BRCA1 to sites of DNA damage. RNF8 and RNF168 orchestrate the recruitment of DNA damage response proteins by catalyzing the ubiquitylation of H2A-type histones and the formation of K63-linked ubiquitin chains on damaged chromatin. Finally, we identify some unresolved issues raised by the discovery of this pathway and discuss the implications of DNA damage-induced ubiquitylation in human disease and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号