首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoclasts are cells that dynamically alternate resorption and migration on bone surfaces, and have the special structure called ruffled borders and clear zones by transmission electron microscopy (TEM). However, TEM features, especially the distribution of the clear zone of osteoclasts during migration, remains unclear. This study aimed to examine osteoclasts cultured on dentin slices by TEM and clarify the features of migrating osteoclasts, especially the three-dimensional distribution of clear zones. Osteoclasts obtained from mice were cultured with dentin slices for 72 h, and then cells were fixed and the tartrate-resistant acid phosphatase (TRAP) activity was detected. Specimens were embedded in Epon, then TRAP-positive cells were serially sectioned by alternating semithin and ultrathin sections. The cells were examined by TEM and the three-dimensional structures were reconstructed by computer. By TEM, most TRAP-positive cells were resorbing osteoclasts with ruffled borders and a clear zone. There were osteoclasts without ruffled borders, and these cells had clear zone-like structures and lamellipodia. The three-dimensional reconstruction showed that resorbing osteoclasts had rounded contours and ring-shaped clear zones encircling ruffled borders, and that osteoclasts without ruffled borders had irregular and flat shapes; the clear zone-like structures showed a dot or patch-like distribution. The presence of lamellipodia of the osteoclasts without ruffled borders shows that the cells are migrating osteoclasts. These results suggest that dot or patch-like distribution is the feature of the clear zone of osteoclasts during migration, and that these structures play the role of focal contacts and adhesion to the dentin surfaces during cell migration.  相似文献   

2.
 Monospecific antibodies against two major glycoproteins of rat lysosomal membranes with apparent molecular masses of 96 and 85 kDa, termed LGP96 and LGP85, respectively, were used as probes to determine the expression and distribution of lysosomal membranes in rat osteoclasts. At the light microscopic level, the preferential immunoreactivity for both proteins was found at high levels at the side facing bone of actively bone-resorbing osteoclasts. Osteoclasts detached from bone surface were devoid of immunoreactivity for each protein. At the electron microscopic level, both proteins were exclusively confined to the apical plasma membrane at the ruffled border of active osteoclasts with well-developed ruffled border membrane. No immunolabeling for both proteins was observed in the basolateral membrane and the clear zone of bone-resorbing osteoclasts. The plasma membrane of preosteoclasts and post- and/or resting osteoclasts showed little or no reactivity against these two antibodies. The results indicate that lysosomal membrane glycoproteins are actively synthesized in active osteoclasts, rapidly transported to the ruffled border area, and contribute to the formation and maintenance of the acidic resorption lacuna of osteoclasts. Accepted: 9 December 1998  相似文献   

3.
The ultrastructure of osteoclasts was examined in fetal rat bones after stimulation or inhibition of resorption in culture. A central ruffled border area completely encircled by a clear zone was considered to represent the resorbing system of the cell. The proportion of ruffled border and clear zone in osteoclast cross sections was compared with changes in bone resorption as measured by the release of previously incorporated radioactive calcium (45Ca). In control cultures 55% of the osteoclast cross sections showed an area closely apposed to bone and this consisted mainly of clear zone; only 11% showed ruffled borders. Treatment with parathyroid hormone (PTH) increased 45Ca release, increased the frequency of finding areas closely apposed to bone (79%), and markedly increased the frequency of the ruffled border area (64%). Colchicine given concurrently with PTH decreased the number of osteoclasts. Colchicine or calcitonin treatment after PTH stimulation decreased the proportion of ruffled border area significantly by 1 h; this was followed by a decrease in 45Ca release. These inhibited osteoclasts resembled osteoclasts from control, unstimulated cultures, suggesting that the cells had returned to their inactive state. Colchicine-treated osteoclasts also showed a loss of microtubules and a massive accumulation of 100 Å filaments, suggesting that synthesis of microtubular subunits had increased.  相似文献   

4.
Osteoclasts are physiological polykaryons specialized in the resorption of calcified tissue. In the context of the clinical use of calcium-phosphate (CaP) ceramics as bone substitutes, this study used transmission electron microscopy to investigate the in vitro mechanisms of CaP ceramic degradation by osteoclastic cell types. Osteoclasts cultured on CaP ceramic developed typical ultrastructural features of bone osteoclasts, such as a polarized dome shape, a clear zone and a ruffled border. Modification of the shape and density of CaP crystals under the ruffled border indicated an acidic microenvironment. Moreover, osteoclasts were able to degrade ceramic by simultaneous resorption and phagocytosis mechanisms. Phagocytosis did not alter the ability of osteoclasts to resorb CaP ceramic. The phagocytosis mechanism consisted of three steps: crystal phagocytosis, disappearance of the endophagosome envelope membrane and fragmentation of phagocytosed crystals within the cytoplasm. The common mechanism of phagocytosis described here is similar to that observed with the monocyte/macrophage lineage, confirming that osteoclasts are part of the mononuclear phagocyte system. Osteoclasts are thus clearly involved in CaP degradation by means of resorption and phagocytosis.  相似文献   

5.
The medullary bone serves as a source of labile calcium mobilized during calcification of the egg shell in birds. Quantitative histological methods demonstrate that the numbers of medullary bone osteoclasts and nuclei per osteoclast remain unchanged during the egg cycle in the Japanese quail (Coturnix). Therefore, cyclic changes in bone resorption cannot be explained by modulations of osteoclasts from and into other bone cells, a mechanism previously suggested for certain species of birds. Rather, dramatic changes in osteoclast cell-surface features occur during the egg cycle, which might account for cyclic variations in resorptive activity. During egg shell calcification, osteoclasts with ruffled borders are closely apposed to bone surfaces; the cytoplasm is rich in vacuoles that contain mineral crystals and seem to derive from the ruffled border. At the completion of egg shell calcification, the ruffled borders and vacuoles move away from the bone surface, although the osteoclast remains attached to the bone along the filamentous or "clear" zone. Associated with the disappearance of the ruffled borders is the appearance of extensive interdigitated cell processes along the peripheral surface of the osteoclast away from the bone. These unusual structures, which may serve as a reservoir of membrane, largely disappear when ruffled borders and associated structures reappear. Therefore, in these hens, the osteoclasts modulate their cell surface rather than their population during the egg cycle.  相似文献   

6.
The cellular distribution of osteoclast integrin subunits alpha(v) and beta(3), the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits alpha(v) and beta(3) were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane. In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

7.
The cellular distribution of osteoclast integrin subunits αv and β3, the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits αv and β3 were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane.In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

8.
During skeletal growth and remodeling the mineralized bone matrix is resorbed by osteoclasts through the constant secretion of protons and proteases to the bone surface. This relies on the formation of specialized plasma membrane domains, the sealing zone and the ruffled border, and vectorial transportation of intracellular vesicles in bone-resorbing osteoclasts. Here we show that Rab7, a small GTPase that is associated with late endosomes, is highly expressed and is predominantly localized at the ruffled border in bone-resorbing osteoclasts. The decreased expression of Rab7 in cultured osteoclasts by antisense oligodeoxynucleotides disrupted the polarization of the osteoclasts and the targeting of vesicles to the ruffled border. These impairments caused a significant inhibition of bone resorption in vitro. The results indicate that the late endocytotic pathway is involved in the osteoclast polarization and bone resorption and underscore the importance of Rab7 in osteoclast function.  相似文献   

9.
Summary Osteoclasts in metaphyses from young rats were systematically sectioned at different levels. Two types of osteoclasts were recognized. One type had no ruffled border while the other, and predominant type contained a ruffled border in a part of its length; some of the latter contained two ruffled borders. The closest contact between osteoclast and bone occurred at the level of the ruffled border and this bone under the border showed characteristic changes indicative of resorption. In some osteoclasts the ruffled border consisted of numerous slender cytoplasmic projections separated by very narrow spaces or channels while in other osteoclasts it was more open. The ruffled border was commonly surrounded by a transitional zone containing numerous thin filaments. The osteoclast usually had its greatest dimension at the level of the ruffled border and the cytoplasm here contained many bodies and vacuoles but a sparse endoplasmic reticulum. Away from the level of the ruffled border the cytoplasmic vacuoles and bodies were fewer while the endoplasmic reticulum was often more pronounced. Parts of the osteoclasts were usually situated close to a vessel. It is suggested that there is a correlation between the development of the ruffled border and the degree of bone resorption and that osteoclasts without a ruffled border are, at least temporarily, inactive with respect to bone resorption. The numerous cytoplasmic bodies, interpreted as lysosomes, are presumed to be important in the resorption process. The closely adjacent positioning of osteoclasts and vessels may facilitate the transport of resorption products to the blood.This research was supported by the Danish Research Council. Grant no. 512–727, 512–819 and 512–1545.I wish to thank Professor Arvid B. Maunsbach for valuable discussions.  相似文献   

10.
Summary The osteoclast-osteocyte relationship at the endosteal surface of femora of two-week old rabbits was studied. Light microscopic observations suggest that during physiological resorption phagocytosis by osteoclasts of osteocytes takes place. Serial sections confirm that the cells are totally engulfed within the cytoplasm of the osteoclasts. Ultrastructural studies support these findings and indicate that the initial stage of phagocytosis of the osteocytes consists of the insinuation of an extension of the ruffled border into the osteocyte lacuna. These extensions are seen to make close contact with the osteocytes prior to their engulfment by the osteoclasts and their final digestion within phagosomes.  相似文献   

11.
Remarkable differences among various membranes of bone cells became evident by examination of freeze-fracture replicas. In osteoclasts, three types of intramembranous particles (IMPs) were identified based on their size and shape: two sizes of isolated globular particles (8 and 12 nm in diameter) and rod-shaped, linear aggregates (8 x 30 nm in dimension). Furthermore, the density and distribution pattern of these IMPs enabled us to distinguish three different domains of membranes of osteoclasts including ruffled border, clear zone, and basolateral regions, as were also observed in thin sections. The highest density of IMPs was 3,500-4,000/microns2 in the ruffled border membrane, and these IMPs included linear aggregates among the usual globular particles. Linear aggregated particles were also observed in the membrane of cytoplasmic vesicles in the vicinity of the ruffled border region, but not in this membrane in other bone cells. In attached osteoclasts, the distribution patterns and densities of IMPs in each ruffled-finger and -plate were extremely variable, from closely to the loosely packed membrane particles. Focal aggregates of membrane particles were also frequently encountered. An important outcome of the present study was the finding that the presence of linear aggregated particles proved to be an additional criterion for distinguishing membrane domains in freeze-replicas of osteoclasts. The surface of the clear zone membrane was not smooth in profile, but revealed a number of eminences that were almost free of particles. Basolateral membranes exhibited a particle density of 2,400/microns2. Globular particles were homogeneously scattered in random fashion on their exposed fracture faces. In some cases, aggregates of IMPs on the basolateral membranes were encountered. In comparison with the ruffled fingers, microprojections from the basolateral surface showed a lesser density of IMPs and were devoid of rod-shaped or linear aggregated particles. Differences between osteoblasts and osteocytes were apparent in the density and the size of IMPs. The membranes of osteoblasts and osteocytes contained the same types of globular particles as seen in osteoclasts. Various sizes of gap junctions were located only on basolateral membranes of the osteoblasts. In contrast, no cellular junctions were observed between osteoclasts and any other type of cells.  相似文献   

12.
'Transcytosis' of calcium (Ca) from bone by osteoclasts was identified by using a newly developed method that uses fixed or living osteoclast-like cells previously differentiated in vitro, a Ca-specific cell-membrane-impermeable fluorescent dye, and confocal laser scanning microscopy. This method, called the cell-membrane-impermeable dye method, revealed that in fixed osteoclast-like cells, a large quantity of Ca was confined within vacuoles and transported toward the apical cell membrane in the cells. These Ca-confined vacuoles were co-localized with marker proteins of both ruffled border and lysosome. The vacuoles were disrupted when treated with an inhibitor of ruffled border ATPase. In living osteoclast-like cells, Ca-confined vacuoles were again preferentially located at the central region and near the apical cell membrane. These results suggest actual transcytosis of Ca from bone by osteoclasts, and are the first direct evidence of the significant role of osteoclasts in the entire process of Ca metabolism in bone.  相似文献   

13.
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.  相似文献   

14.
We performed immunocytochemical localization of cathepsin D in osteoclasts of the proximal growth plate of the rat femurs using both the avidin-biotin-peroxidase complex method for cryo-semi-thin (1 micron) sections and the colloidal gold-labeled IgG method for K4M ultra-thin sections. At the light microscopic level, cathepsin D immunoreactivity in the osteoclasts appeared at the vesicles, granules, and/or small vacuoles. They were distributed throughout the cytoplasm of each cell and were relatively numerous close to the bone surface. This antigen could not be detected at the eroded bone surface. As for other cells, immunoreactivity was seen only in the lysosomes of osteoblast-like cells. Immunoreactivity in the osteoclasts was stronger and greater in the density and number than in osteoblast-like cells. At the electron microscopic level, osteoclasts with well-developed ruffled border possessed numerous cathepsin D-containing lysosomes, vacuoles, and coated vesicle-like structures. Cathepsin D-containing lysosomes fused with cathepsin-negative vacuoles and formed large secondary lysosomes. Osteoclasts with poorly developed ruffled border possessed fewer cathepsin D-containing lysosomes than those with well-developed ruffled border. No immunogold particles were seen in vacuole-like channel expansions of the ruffled borders, between the channels of the ruffled borders, or on the eroded bone surface. These findings demonstrate that osteoclasts contain a large amount of cathepsin D. They suggest that cathepsin D is necessary for osteoclastic bone resorption, that it plays an indirect rather than direct role.  相似文献   

15.
Summary We performed immunocytochemical localization of cathepsin D in osteoclasts of the proximal growth plate of the rat femurs using both the avidin-biotin-peroxidase complex method for cryo-semi-thin (1 m) sections and the colloidal gold-labeled IgG method for K4M ultra-thin sections.At the light microscopic level, cathepsin D immunoreactivity in the osteoclasts appeared at the vesicles, granules, and/or small vacuoles. They were distributed throughout the cytoplasm of each cell and were relatively numerous close to the bone surface. This antigen could not be detected at the eroded bone surface. As for other cells, immunoreactivity was seen only in the lysosomes of osteoblast-like cells. Immunoreactivity in the osteoclasts was stronger and greater in the density and number than in osteoblast-like cells. At the electron microscopic level, osteoclasts with well-developed ruffled border possessed numerous cathepsin D-containing lysosomes, vacuoles, and coated vesicle-like structures. Cathepsin D-containing lysosomes fused with cathepsinnegative vacuoles and formed large secondary lysosomes. Osteoclasts with poorly developed ruffled border possessed fewer cathepsin D-containing lysosomes than those with well-developed ruffled border. No immunogold particles were seen in vacuole-like channel expansions of the ruffled borders, between the channels of the ruffled borders, or on the eroded bone surface.These findings demonstrate that osteoclasts contain a large amount of cathepsin D. They suggest that cathepsin D is necessary for osteoclastic bone resorption, that it plays an indirect rather than direct role.  相似文献   

16.
The fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka. We fractured one side of lepidotrichia in a caudal fin ray without injuring the other soft tissues including blood vessels. Using the transgenic medaka in which osteoclasts and osteoblasts were visualized by GFP and DsRed, respectively, we found that two different types of functional osteoclasts were induced before and after osteoblast callus formation. The early-induced osteoclasts resorbed the bone fragments and the late-induced osteoclasts remodeled the callus. Both types of osteoclasts were induced near the surface on the blood vessels, while osteoblasts migrated from adjacent fin ray. Transmission electron microscopy revealed that no significant ruffled border and clear zone were observed in early-induced osteoclasts, whereas the late-induced osteoclasts had clear zones but did not have the typical ruffled border. In the remodeling of the callus, the expression of cox2 mRNA was up-regulated at the fracture site around vessels, and the inhibition of Cox2 impaired the induction of the late-induced osteoclasts, resulting in abnormal fracture healing. Finally, our developed medaka fracture healing model brings a new insight into the molecular mechanism for controlling cellular behaviors during the fracture healing.  相似文献   

17.
By means of light- and electron-microscopic immunocytochemistry, we have demonstrated the expression of vacuolar H+-ATPase in mouse osteoclasts. In fully differentiated osteoclasts, intense immunolabeling was observed along the plasma membranes including those of ruffled borders and associated pale vesicles and vacuoles, whereas those of clear zones and basolateral cell surfaces were entirely free of immunoreaction. Specific expression of vacuolar H+-ATPase was also detected over polyribosomes and cisterns of the rough-surfaced endoplasmic reticulum. Multinucleated osteoclastic cells were suspended on dentine slices and cultured for 48 h in the presence or absence of either concanamycin B or bafilomycin A1, specific inhibitors of vacuolar H+-ATPase. Morphometric analysis of co-cultured dentine slices with backscattered electron microscopy revealed that both inhibitors strongly reduced the formation of resorption lacunae in a dose-dependent manner. These results suggest that vacuolar H+-ATPase is produced in the rough-surfaced endoplasmic reticulum, stored in the membrane vesicles, and transported into the ruffled border membranes of osteoclasts, and that this enzyme plays a key role in the creation of an acidic subosteoclastic microenvironment for the demineralization of co-cultered substrates.  相似文献   

18.
Rab7 has been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts, it is involved in formation of the ruffled border, which is a late endosomal-like compartment in the plasma membrane. Here we report a new Rab7-interacting protein, Rac1, another small GTPase protein that binds to the GTP-form of Rab7 as found with a two-hybrid system. We demonstrate further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, partial colocalization is perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments enabling endosomal vesicles to switch tracks and may thus also regulate ruffled border formation in osteoclasts.  相似文献   

19.
After ia (osteopetrotic) rats receive whole body radiation and an injection of spleen cells from a normal littermate, the dense, sclerotic skeleton characteristic of osteopetrosis is rapidly remodeled and becomes normal in appearance radiographically and histologically within three weeks. The mechanism of this skeletal transformation has been explored in cured ia rats by light and electron microscopic examination of osteoclasts. In ia rats less than 25 days of age, osteoclasts viewed by electron microscopy lack a ruffled border - the extensive elaboration of plasma membrane next to the bone surface. Cured ia rats have osteoclasts with ruffled borders indistinguishable from those of normal littermates. In ia rats that receive only 600 rads whole body radiation, osteoclasts are still present three weeks later, but appear abnormal by light microscopy, with dense nuclei and lacking cytoplasmic vacuoles next to the bone surface. Cured ia rats have two types of osteoclasts, one type indistinguishable from osteoclasts of normal littermates by light microscopy, the other resembling osteoclasts of ia rats that received radiation only. These data indicate that the mechanism of the spleen cell cure for osteopetrosis in ia rats is rapid remodeling of the skeleton produced by osteoclasts with ruffled borders. Whether normal spleen cells produce these osteoclasts directly by cell division or indirectly by elaboration of some unknown local factor required for formations of ruffled borders by ia osteoclasts is not known.  相似文献   

20.
Osteocytes are released from the osteocytic lacunae when osteoclasts resorb the bone matrix during bone modeling and remodeling. It remains unknown how osteoclasts react when releasing osteocytes during bone modeling, and the fate of these released osteocytes is also unclear. Femoral mid-shafts of 2-day-old kittens were sectioned into serial 0.5 microm-thick semithin or 0.1 microm-thick ultrathin sections, and examined by light microscopy (LM) and transmission electron microscopy (TEM). The sections showed many osteoclasts at the endosteum but there were no osteoblasts. There were many half-released, fully released, half-exposed, and fully exposed osteocytes on the bone surfaces. Many cell-like structures were seen in the cell bodies of osteoclasts by LM, and some semithin sections were re-sectioned into ultrathin sections for re-observation by TEM. By TEM, these were determinated to be mononuclear cells. The serial ultrathin sections showed that the mononuclear cells appeared to be engulfed in osteoclasts on one section but that the cell was connected with the bone surface of the osteocytic lacuna on another section. These results show that the mononuclear cells in the osteoclasts were osteocytes. The present study suggests that osteoclasts engulf some osteocytes but do not engulf others when releasing osteocytes during bone modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号