首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

2.
α-Amylases have been found to convert starch and glycogen, in part, to products other than hemiacetal-bearing entities (maltose, maltodextrins, etc.)—hitherto, the only products obtained from natural α-glucans by α-amylolysis. Glycosides of maltosaccharides were synthesized by purified α-amylases acting on starch or bacterial glycogen in the presence of p-nitrophenyl α- or β-d-glucoside. From a digest with crystallized B. subtilis var. amyloliquefaciens α-amylase, containing 4 mg/ml of [14C]glycogen and 40 mmp-NP β-d-glucoside, three pairs of correspondingly labeled glycosides and sugars were recovered: p-NP α-d-[14C]glucopyranosyl (1 → 4) β-d-glucopyranoside, and [14C]glucose; p-NP α-[14C]maltosyl (1 → 4) β-d-glucopyranoside, and [14C]maltose; p-NP α-[14C]maltotriosyl (1 → 4) β-d-glucopyranoside, and [14C]maltotriose. The three glycosides accounted for 11.4% of the [14C]glycogen donor substrate; the three comparable sugars, for 30.4%; higher maltodextrins, for 58.2%. Calculations based on the molar yields of all reaction products show that [14C]glycosyl moieties were transferred from donor to p-NP β-d-glucoside with a frequency of 0.234 relative to all transfers to water. This is a very high value considering the minute molar ratio (0.0007) of β-d-glucoside-to-water concentration. Less striking but similar findings were obtained with cryst. hog pancreatic and Aspergillus oryzae α-amylases. The results extend earlier findings (Hehre et al., Advan. Chem. Ser. (1973) 117, 309) in showing that α-amylases have a substantial capacity to utilize the C4-carbinols of certain d-glucosyl compounds as acceptor sites.  相似文献   

3.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

4.
The green rice leafhopper, Nephotettix cincticeps (Uhler), is an insect pest of rice and discharges β-glucosidase (EC 3.2.1.21) from its salivary glands during feeding. To investigate the biological function of this enzyme, we purified it from the heads of 18,000 adult females by acetone precipitation and a series of chromatography steps: gel filtration, cation-exchange chromatography, metal-affinity chromatography and hydrophobic interaction chromatography. During cation-exchange chromatography, β-glucosidases were eluted in three peaks (isozymes). These β-glucosidases were monomeric proteins of 58 kDa as estimated by SDS-PAGE and 62 kDa based on gel filtration. All of the purified β-glucosidase isozymes exhibited maximum activity for p-nitrophenyl β-glucoside (NPGlc) and p-nitrophenyl β-galactopyranoside (NPGal) at pH 5.5 and 5.0, respectively. There was no significant difference in substrate specificity among the three isozymes. The Km values were estimated to be 0.13 μM for NPGlc and 0.9 μM for NPGal. Among the oligosaccharide substrates examined, laminaribiose (Glc β1-3 Glc) was the most extensively hydrolyzed, sophorose (Glc β1-2 Glc) and cellobiose (Glc β1-4 Glc) were comparatively well hydrolyzed, and gentiobiose (Glc β1-6 Glc), lactose (Gal β1-4 Glc), laminaritriose, cellotriose and cellotetraose were poorly hydrolyzed. Among the glycoside substrates examined, salicin was considerably well hydrolyzed. β-Glucosidase was detected in the salivary sheaths by activity staining with a fluorescent substrate. The salivary β-glucosidase of N. cincticeps may be involved in the hydrolysis of a phenol glucoside present in the saliva, which is a step in the solidification of gelling saliva to form salivary sheaths.  相似文献   

5.
An acid-tolerant α-galactosidase (CVGI) was isolated from the fruiting bodies of Coriolus versicolor with a 229-fold of purification and a specific activity of 398.6 units mg?1. It was purified to electrophoretic homogeneity by ion exchange chromatography and gel filtration chromatography. The purified enzyme gave a single band corresponding to a molecular mass of 40 kDa in SDS-PAGE and gel filtration. The α-galactosidase was identified by MALDI-TOF-MS and its inner peptides were sequenced by ESI-MS/MS. The optimum temperature and pH of the enzyme were determined as 60 °C and 3.0, respectively. The enzyme was very stable at a temperature range of 4–50 °C and at a pH range of 2–5. Among the metal ions tested, Cu2+, Cd2+ and Hg2+ ions have been shown to partially inhibit the activity of α-galactosidase, while the activity of CVGI was completely inactivated by Ag+ ions. N-bromosuccinamide inhibited enzyme activity by 100 %, indicating the importance of tryptophan residue(s) at or near the active site. CVGI had wide substrate specificity (p-nitrophenyl galactoside, melidiose, raffinose and stachyose). After treatment with CVGI, raffinose family oligosaccharide was hydrolyzed effectively to yield galactose and sucrose. The results showed that the general properties of the enzyme offer potential for use of this α-galactosidase in several production processes.  相似文献   

6.
An alkalophilic strain isolated from soil produced intracellular cyclomaltodextrinase on the culture medium at an initial pH of 10.6. The strain was identified as closely resembling Bacillus circulans. The enzyme was purified 252-fold from the cell extract by chitosan treatment, ammonium sulfate fractionation, DEAE-Toyopearl column chromatography, and gel filtration. The pH and temperature optima of the purified enzyme were 6.0 and 50°C. The molecular weight of the enzyme was 126,000, with two subunits of 67,000. The isoelectric point was pH 4.2. Enzyme activity was inhibited by Ag+, Hg2+, Cu2+, and p-chloromercuribenzoate. The enzyme hydrolyzed α-, β-, and γ-cyclodextrins, as well as linear maltodextrins, to yield maltooligosaccharides. Starch and maltose were not degraded by the enzyme.  相似文献   

7.
An α-galactosidase from alfalfa seeds was purified 140-fold by ammonium sulfate fractionation, and column chromatography on Sephadex G-100, DEAE- and CM-Sephadex. Polyacrylamide-gel electrophoresis of the purified enzyme showed a single protein band. The molecular weight was estimated to be approximately 57,000 by gel-filtration. The purified enzyme hydrolyzed p-nitrophenyl α-d-galactoside more rapidly than raffinose. The maximal enzyme activities were obtained at pH 4.0 and 5.5 for p-nitrophenyl α-d-galactoside and at 4.5 for raffinose. The enzyme was shown to be inhibited by Hg2+ and Ag+ ions, and d-galactose.  相似文献   

8.
The (1→4)-β-d-glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β-d-glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 mm, respectively. d-Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β-d-glucopyranoside (Ki 2.1 μm), cellobiose (Ki 1.95 μm), and cellotriose (Ki 7.9 μm) [cf.d-glucose (Ki 1756 μm)]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β-d-glucopyranoside appeared to be competitively inhibited by d-glucono-1,5-lactone. However, inhibition of hydrolysis by d-glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β-d-glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β-d-glucanase found in the same cellulase, namely, the (1→4)-β-d-glucan cellobiohydrolase.  相似文献   

9.
A β-N-acetylhexosaminidase [EC 3.2.1.30] has been purified ~98-fold from an extract of the digestive organs of Saxidomus purpuratus by using ammonium sulfate fractionation, and chromatography on Toyopearl HW-50, CM-cellulose, and Sepharose 4B. The purified enzyme, the molecular weight of which was estimated to be ~66,000 by gel filtration, was composed of two sub-units of molecular weight 30,000 as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The purified enzyme had a pH optimum of 3.8 and an optimum temperature of 55°, and its activity was enhanced ~2-fold in the presence of 0.1m sodium chloride. The Michaelis constants toward p-nitrophenyl 2-acetamido-2-deoxy-β-d-glucoside and -galactoside were 1.2 × 10?4 and 1.3 × 10?4m, respectively.  相似文献   

10.
β-d-Mannosidase (β-d-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-d-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-d-mannosidase, β-d-galactosidase, 2-acet-amido-2-deoxy-d-glucosidase, (1→4)-β-d-mannanase, and (1→4)-β-d-glucanase activities, almost devoid of α-d-galactosidase activity, and contaminated with <0.02% of β-d-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-d-manno-oligosaccharides of d.p. 3–5 (12.5mm). The initial rate of hydrolysis of (1→4)-linked β-d-manno-oligosaccharides of d.p. 2–5 and of reduced β-d-manno-oligosaccharides of d.p. 3–5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-d-mannopyranosides were readily hydrolysed. β-d-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-d-galactosyl-β-d-mannobiose and 63-α-d-galactosyl-β-d-mannotetraose, and at ~90 times the rate for β-d-mannobi-itol.  相似文献   

11.
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.  相似文献   

12.
Cutinase from pollen grains of Tropaeolum majus was purified by Sephadex G-100 gel filtration, QAE-Sephadex chromatography, and isoelectric focusing. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be 40,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cutinase was found to be a glycoprotein containing about 7% carbohydrate and the isoelectric point of this enzyme was 5.45. It catalyzed hydrolysis of p-nitrophenyl esters of C2 to C18 fatty acids with similar Km and V. The purified cutinase showed an optimum pH of 6.8 with cutin as the substrate, whereas with p-nitrophenyl esters of fatty acids the optimum pH was 8.0. This enzyme did not show any metal ion requirement. Unlike the previously studied fungal cutinases, the present pollen enzyme was strongly inhibited by thiol-directed reagents such as N-ethylmaleimide and p-hydroxymercuribenzoate whereas it was totally insensitive to the active serine-directed reagent, diisopropylfluorophosphate. The purified pollen cutinase showed preference for primary alcohol esters, but it did not catalyze hydrolysis of tripalmitoyl or trioleyl glycerol at significant rates. The properties of the pollen enzyme are, in general, in sharp contrast to those of the fungal cutinase, and the present results strongly suggest that the pollen enzyme belongs to a new class of cutinases. Another esterase which preferentially hydrolyzed p-nitrophenyl acetate was also found in the extracellular fluid. This enzyme, separated from cutinase, showed a pI of 5.6 and it was sensitive to diisopropylfluorophosphate, but not to SH-directed reagents.  相似文献   

13.
Human brain α-L-fucosidase has been extracted and the soluble portion has been purified 9388-fold with 25% yield by a two-step affinity chromatographic procedure utilizing agarose-epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all seven isoelectric forms of the enzyme were purified. Trace amounts of eight glycosidases, with hexosaminidase being the largest contaminant (1% by activity) were found in the purified α-L-fucosidase preparation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a single subunit of molecular weight 51,000 ± 2500. The purified enzyme has a pH optimum of 4.7 with a suggested second optimum of 6.6. The apparent Michaelis constant and maximal velocity of the purified enzyme with respect to the p-nitrophenyl substrate are 0.44 mM and 10.7 μmol/min/mg protein, respectively. Ag2+ and Hg2+ completely inactivated the enzyme at concentrations of 0.1-0.3 mM. Antibodies made previously against purified human liver α-L-fucosidase cross-reacted with the purified brain α-L-fucosidase and gave a single precipitin line coincident with that from purified liver α-L-fucosidase. From all our studies it appears that at least the soluble portion of brain α-L-fucosidase is identical to human liver α-L-fucosidase.  相似文献   

14.
A riboflavin α-glucoside-synthesizing enzyme from the acetone powder of pig liver was purified by a procedure including fractionation with ammonium sulfate, heat treatment, fractionation with acetone, gel filtration on a Sephadex G-150 column, calcium phosphate gel treatment, and isoelectric focusing. A final enzyme preparation was homogeneous on polyacrylamide disc gel electrophoresis and in the ultracentrifuge. The enzyme had a sedimentation coefficient of 9.90 S and an isoelectric point of pH 3.7. The enzyme had a pH optimum at 6.0 with maltose as substrate. The enzyme catalyzed the hydrolysis of diverse kinds of α-glucosidic substrates, and the transfer of α-glucosyl residue from these substrates to riboflavin. The Km value for maltose was 1.20×10?3m. The enzyme hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside. Amylose was almost completely hydrolyzed to glucose by the enzyme. Maltotriose was obtained as the main transfer product after the treatment of maltose with the enzyme. The enzyme also catalyzed the transfer of α-glucosyl residue from maltose to pyridoxine, esculin, rutin, and adenosine. It was recognized that a single enzyme catalyzed not only the hydrolysis of maltose and α-glucosidic substrates but also the transfer of the α-glucosyl residue of these substrates to suitable acceptors.  相似文献   

15.
α-d-Galactosidases (α-d-galactoside galactohydrolase, EC 3.2.1.22) from normal coconut endosperm were isolated and partially purified by a combination of ammonium sulfate fractionation, SP-Sephadex C50–120 ion-exchange chromatography and Sephadex G-200 and G-100 gel filtration. Two molecular forms of the enzyme, designated as A and B, were eluted after SP-Sephadex C50–120 ion-exchange chromatography. α-d-Galactosidase A, which is the major isoenzyme, was partially purified 43-fold on Sephadex G-200 and has a MW of about 23 000 whereas α-d-galactosidase B was partially purified 23-fold on Sephadex G-100 and has a similar MW of about 26 600. Both isoenzymes exhibited optimum activity at pH 7.5. The apparent Km and Vmax of α-d-galactosidase A were obtained at 3.46 × 10?4M and 1.38 × 10?3 M p-nitrophenyl α-<d-galactoside, respectively. A distinct substrate inhibition was noted. The enzyme was inhibited strongly by d-galactose and to a lesser extent by myo-inositol, d-glucose-6-phosphate, l-arabinose, melibiose and iodoacetic acid. Similarly, makapuno α-d-galactosidase was localized in the 40–70 % (NH4)2SO4 cut but its optimum activity at pH 7.5 was considerably lower as compared to the normal. Its Km was obtained at 6.75 × 10?4 M p-nitrophenyl α-d-galactoside while the Vmax was noted at 5.28 × 10?3 M p-nitrophenyl α-d-galactoside. Based on the above kinetic data, the possible cause(s) of the deficiency of α-d-galactosidase activity in makapuno is discussed.  相似文献   

16.
A low-molecular-weight human liver acid phosphatase was purified 2580-fold to homogenity by a procedure involving ammonium sulfate fractionation, acid treatment, and SP-Sephadex ion-exchange chromatography with ion-affinity elution. The purified enzyme contains a single polypeptide chain and has a molecular weight of 14,400 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of this enzyme (E) is reported. A pH dependence study using p-nitrophenyl phosphate as a substrate (S) revealed the effect of substrate ionization (pKa 5.2) and the participation of a group in the ES complex having a pKa value of 7.8. The enzyme is readily inactivated by sulfhydryl reagents such as heavy metal ions. Alkylation of the enzyme with iodoacetic acid and iodoacetamide causes complete inactivation of the enzyme and this inactivation is prevented by the presence of phosphate ion. The enzyme is also inactivated by treatment with diethyl pyrocarbonate; protection against this reagent is afforded by phosphate ion. The substrate specificity of this enzyme is unusual for an acid phosphatase. Of the many alkyl and aryl phosphomonoesters tested, the only possibly physiological substrate hydrolyzed by this enzyme was flavin mononucleotide, which exhibits a V which is 3-fold larger at pH 5.0 and 6-fold larger at pH 7.0 than that for p-nitrophenyl phosphate. However, the enzyme also catalyzes the hydrolysis of acetyl phosphate at pH 5.0 with a velocity eight times larger than that reported for an acyl phosphatase from human erythrocytes.  相似文献   

17.
A high-isoelectric-point (pI), alkaline endo-1,4-β-glucanase (Egl-257) of Bacillus circulans KSM-N257 was purified to homogeneity and crystallized. The purified enzyme hydrolyzed carboxymethyl cellulose (CMC) with optima of pH 8.5 and 55 °C. The molecular mass was 43 kDa, and the pI was pH 9.3. The structural gene contained a single open reading frame of 1221 bp, corresponding to 407 amino acids (aa), including a 30-aa signal peptide (377 aa and 41,680 Da for the mature enzyme). Egl-257 hydrolyzed lichenan and showed 76.3% aa identity to a lichenase from B. circulans WL-12 belonging to glycosyl hydrolase family 8 but did not hydrolyze laminarin, curdran, and xylan at all. This indicates that Egl-257 is a true endo-1,4-β-glucanase. However, this enzyme was not active on p-nitrophenyl β-d-cellotrioside and p-nitrophenyl β-d-cellotetraoside. It was crystallized by the hanging-drop vapor-diffusion method with phosphate plus CdCl2 as precipitant. Pyramid-like crystals were formed, and they diffracted X-rays beyond 2.2 Å resolution. It belongs to the space group P212121 with unit cell parameters of a=62.5 Å, b=71.7 Å, and c=88.6 Å.  相似文献   

18.
Chitosan was found to be a better support than alginate beads for immobilization of β-glucosidase from Scytalidium lignicola. The optimum concentration of glutaraldehyde for enzyme immobilization was 0.2%. Immobolized β-glucosidase was more able in the pH range of 3–6. Immobilized β-glucosidase retained about 70% of its activity at 50%C after 72 h of incubation while free enzyme lost most of its activity. The log of activity retained vs time was a straight line with free enzyme but was curved for immnobilized enzyme. Lineweaver-Burk plots of free and immoblized β-glucosidase gave Km values of 2 × 10−4 M and 5.5 × 10−4 M for p-nitrophenyl β-d-glucopyranoside, respectively. Addition of immobilized β-glucosidase to a saccharification system gave a 30% increase in reducing sugar availability compared to free enzyme addition and was at least 4 times reusable without appreciable loss in enzyme activity.  相似文献   

19.
An endo-β-1,4-glucanase (EC 3.2.1.4) was purified from a culture filtrate of Aspergillus niger IFO31125 by column chromatography through TSK-gel DEAE-3SW and TSK-gel DEAE-5PW, and by gel filtration through TSK-gel G2000SW by high performance liquid chromatography. The enzyme was estimated to have a molecular weight of about 40 kDa by both gel filtration and SDS-polyacrylamide gel electrophoresis, and appeared to consist of a monomeric protein. It contained 8.9% carbohydrate. The optimal pH for activity was 6.0–7.0, and the stable pH range was 5.0–10.0. The optimum temperature at pH 6.0 was around 70°C. The enzyme was very thermally stable and no loss of original activity was found on incubation at 60°C for 2 h. The enzyme efficiently hydrolyzed carboxymethylcellulose and lichenan, but crystalline forms of cellulose, curdlan, laminarin, cellobiose, p-nitrophenyl-β-d-glucopyranoside and p-nitrophenyl-β-d-cellobioside were barely hydrolyzed. The activity of the enzyme was inhibited by Hg2+ and Cu2+ but was not affected by other inhibitors of thiol enzymes such as p-chloromercuribenzoate and N-ethylmaleimide. N-Bromosuccinimide showed a strong inhibitory effect, suggesting that a tryptophan residue is essential for the activity of the enzyme. The N-terminal amino acid sequence of the enzyme showed considerable homology to those of endo-β-1,4-glucanases from some other microorganisms, including Sclerotinia sclerotiorum and Schizophyllum commune. The enzyme had very strong protease-resistance, and showed no loss of activity when incubated with proteases such as Savinase at 40°C, even for 2 weeks.  相似文献   

20.
Several wall-bound exo-1,3-β-d-glucanases have been solubilized by 4 M LiCl from suspension-cultured Acacia cells. One exhibits both exo-laminarinase (EC 3.2.1.39) and β-d-glucosidase (EC 3.2.1.21) activities and has been purified up to 30-fold by anion-exchange chromatography, gel filtration and flat-bed electrofocusing. This enzyme hydrolyses laminarin, laminaribiose and p-nitrophenyl-β-d-glucopyranoside. The enzyme, with a pI of 4.6, is apparently homogenous, since it behaves as a single protein with an apparent molecular weight of 62000 on SDS-polyacrylamide gel electrophoresis. Its Km value in 0.1 M acetate buffer (pH 5.0) with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.27 mM; with laminarin as substrate the Km expressed in glucosyl residue concentration was 0.64 mM. Other kinetic experiments showed that exo-laminarinase and β-d-glucosidase activities correspond to two distinct catalytic sites in the same protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号