首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A component responsible for flocculation was extracted from Pseudomonas strain C-120 by treating the cells with 3 M guanidine hydrochloride. The guanidine hydrochloride-extracted cells were reflocculated, not only with the guanidine hydrochloride extract but with DNA prepared from various bacteria. The reconstituted flocs were deflocculated by deoxyribonuclease or guanidine hydrochloride which indicated that the reconstituted flocs closely resembled natural flocs. In reconstitution experiments using Escherichia coli DNA at different molecular weights, it was found that DNA with a molecular weight higher than about 6 × 106 was required to flocculate the guanidine hydrochloride-extracted cells. Heat-denatured DNA did not flocculate the guanidine hydrochloride-extracted cells. DNA with a high molecular weight was detected in the guanidine hydrochloride extract. It was concluded that the component involved in flocculation of this organism was highly polymerized double stranded DNA.  相似文献   

2.
Normal preparations of B. subtilis DNA have weight average native molecular weights of 10 to 30 x 106. For any given preparation the upper and lower 95% size limits may differ by a factor of ten or more. Single-stranded molecular weights indicate an average of 1 to 4 breaks per single strand of the native DNA. The reduction in transforming activity and viscosity following DNAase I digestion can be accounted for by a direct relationship between the transforming activity of a DNA and its single-stranded molecular weight. Uptake studies with DNAase I treated heavy (2H15N 3H) DNA show that single strand breaks inhibit integration less than transformation. A provisional estimate of the size of the integrated region based on correlating the single strand size of the donor-recipient complex with the donor-recipient density differences following alkali denaturation came to 1530 nucleotides. Using a competent, nonleaky thymine-requiring strain of B. subtilis grown in 5-BU medium before and after transformation, it was shown that (a) No detectable amount of DNA synthesis is necessary for the initial stages of integration, (b) Cells which have recently been replicating DNA are not competent. (c) Cells containing donor DNA show a lag in DNA replication following transformation, (d) When donor DNA is replicated it initially appears in a density region between light and hybrid. This indicates that it includes the transition point formed at the time of reinitiation of DNA synthesis in the presence of 5-BU following transformation. A model is proposed in which donor DNA is integrated at the stationary growing point of the competent cell, which is in a state of suspended DNA synthesis.  相似文献   

3.
Ultracentrifugal analyses of the native silk proteins extracted from the various parts of the middle silk gland of the mature silkworm have revealed that there exist four components with S°20,w values of 10S, 9–10S, 9S, and 4S in the extract. It is suggested that the fastest 10S component is the native fibroin synthesized in the posterior silk gland and transferred to the middle silk gland to be stored there, while the slower three components probably correspond to inner, middle, and outer sericins which were synthesized in the posterior, middle, and anterior portion of the middle silk gland, respectively. Native fibroin solution was prepared from the most posterior part of the middle silk gland. Ultracentrifugal analyses have shown that the solution contains considerable amounts of aggregates in addition to the main 10S component. Treatment with lithium bromide (LiBr), urea, or guanidine hydrochloride solution up to 6 M all have failed to dissociate the 10S component. From the sedimentation equilibrium analyses and partial specific volume of 0.716, the molecular weight of the 10S component of the native fibroin solution was found to be between 3.2 – 4.2 x 105, with a tendency to lie fairly close to 3.7 x 105.  相似文献   

4.
Mutants of Diplococcus pneumoniae that lacked the two major deoxyribonucleases of the cell—one an endonuclease, the other an exonuclease preferentially active on native deoxyribonucleic acid (DNA)—were obtained. The development of a method for detecting mutant colonies, based on the binding of methyl green to DNA, facilitated isolation of the mutants. Neither enzyme was essential for growth of the cells, for repair of ultraviolet damage, or for any phase of DNA-mediated transformation. Residual deoxyribonuclease activity in the double mutant corresponded to an exonuclease, approximately one-fifth as active as the major exonuclease, that attacked native and denatured DNA equally well. This activity appeared to be associated with the DNA-polymerase enzyme. A mutant that apparently lacked a cell wall lytic enzyme was also fully transformable. A mutant strain that was four times more sensitive to ultraviolet light than the wild type also transformed normally. Recipient cells of this strain were deficient in the repair of ultraviolet-irradiated transforming DNA. Mutants were found which, unlike the wild type, integrated donor markers only with high efficiency, thereby indicating that a particular cellular component that is susceptible to loss by mutation, such as an enzyme, is responsible for low integration efficiency.  相似文献   

5.
Several procedures were used i n an attempt to prepare clean cell walls from Bacillus subtilis. The results indicate that protein and nucleic acids are tightly bound tothe walls. cleanest wall preparations were found following trichloroacetic acid extraction at 60° or by extraction with 0.lN NaOH under a nitrogen atmosphere for 10 hrs. Protein denaturants, such as sodium dodecyl sulfate and concentrated guanidine hydrochloride were relatively ineffective in removing proteins and nucleic acids from the cell walls. Cell wall-bound DNA was biologically The active i n transformation assays.  相似文献   

6.
The binding characteristics of partially purified glucocorticoid receptor complexes from hormone sensitive, non-differentiating BCL1 cells to sequentially deproteinized BCL1 chromatin-cellulose was investigated. [3H]Triamcinolone acetonide (TA)-receptor complexes were purified (approx. 30-fold) from DEAE-cellulose columns by salt elution which allowed receptor activation only in the absence of molybdate. Addition of 10 mM molybdate completely blocked salt activation. The binding pattern of the activated [3H]TA-receptor complexes to chromatin-cellulose extracted with 0-8 M guanidine hydrochloride revealed three regions of increased binding activity (acceptor sites), at 2, 5 and 7 M guanidine hydrochloride. Acceptor site binding was markedly reduced for chromatin extracted with 3, 6 and 8 M guanidine hydrochloride. Non-activated receptor complexes demonstrated very low binding to deproteinized chromatin. It was also shown that chromatin binding required glucocorticoid receptors and that free ligand or ligand bound to other proteins did not bind significantly to chromatin. In addition, binding of [3H]TA-receptor complexes to partially deproteinized chromatin was competable by unlabeled TA-receptor complexes. Scatchard analysis demonstrated that chromatin from non-differentiating BCL1 cells possesses multiple, high-affinity binding sites which differ in their affinity for the glucocorticoid receptor. Partially deproteinized chromatin from lipopolysaccharide-stimulated BCL1 cells demonstrated a different pattern of receptor binding, i.e., receptor binding was significantly greater to chromatin previously extracted with 6-8 M guanidine hydrochloride. These results suggest that differentiation alters the state of chromatin and the interaction of non-histone protein/DNA acceptor sites with glucocorticoid receptors. These alterations may play a role in the acquisition of hormone resistance.  相似文献   

7.
A new deoxyribonuclease, PaeExo IX, has been purified to electrophoretic homogeneity from extracts of Pseudomonas aeruginosa strain PAO. This enzyme, which is active in the presence of EDTA, is equally efficient in hydrolyzing native and heart-denatured DNA to acid-s-luble products. The enzyme is partially or totally inhibited by the presence of several divalent cations. The active protein has a molecular weight of 1.6 +/- 0.1 x 10(5) and is composed of two nonidentical polypeptides with molecular weights of 78,000 and 69,000.  相似文献   

8.
The in situ assay of deoxyribonucleases in DNA-containing polyacrylamide gels following their separation by microdisc electrophoresis was used to determine the deoxyribonuclease pattern of human lymphocytes during stimulation with phytohemagglutinin (PHA). Two additional neutral deoxyribonuclease activities are detectable in stimulated cells, one only active with denatured DNA, the other active with native and denatured DNA as substrate, showing a maximum activity after 36 h and increasing in waves respectively. A group of acid deoxyribonuclease activities also shows a maximum after 36 h of stimulation. A neutral deoxyribonuclease active only with native DNA is missing in stimulated lymphocytes. It is suggested that the acid deoxyribonuclease activities and the neutral deoxyribonuclease active only with denatured DNA are involved in DNA synthesis, whereas the involvement of the neutral deoxyribonuclease active with native and denatured DNA in processing of DNA excreted in stimulated lymphocytes is discussed.  相似文献   

9.
The cellular localization of enzymes in Diplococcus pneumoniae was examined by fractionation of spheroplasts. A deoxyribonuclease implicated in the entry of deoxyribonucleic acid (DNA) into the cell during genetic transformation was located in the cell membrane. This enzyme, the major endonuclease of the cell (endonuclease I), which is necessary for the conversion of donor DNA to single strands inside the cell and oligonucleotides outside, thus could act at the cell surface. Another enzyme, the cell wall lysin (autolysin), was also found in the membrane fraction. Other enzymes, including amylomaltase, two exonucleases, and adenosine triphosphate-dependent deoxyribonuclease, and a restriction type endonuclease, were located in the cytosol within the cell. None of the enzymes examined were predominantly periplasmic in location. Spheroplasts were obtained spontaneously on incubation of pneumococcal cells in concentrated sugar solutions. The autolytic enzyme appears to be involved in this process. Cells that were physiologically competent to take up DNA formed osmotically sensitive spheroplasts two to three times faster than cells that were not in the competent state. Although some genetically incompetent mutants also formed spheroplasts more slowly, other such mutants formed them at the faster rate.  相似文献   

10.
Testosterone-binding globulin (TeBG) of canine serum was purified to apparent homogeneity by affinity chromatography on testosterone-17 alpha-ethynylcarboxyaminoethyl-Sepharose 4B followed by hydroxyapatite column chromatography. Canine TeBG was a glycoprotein containing 5.5% carbohydrates. Equilibrium sedimentation analysis in the presence and absence of 6 M guanidine hydrochloride gave molecular weights of 40,000 and 76,000, respectively, suggesting that native TeBG consists of two subunits. Equilibrium dissociation constants at 0 degrees C for testosterone and dihydrotestosterone were estimated to be 5.58 x 10(-8) M and 1.43 x 10(-8) M, respectively, and the number of binding site per native molecule was approximately unity for both androgens. Canine TeBG had virtually no affinity for estradiol, progesterone, or cortisol. Canine TeBG did not cross-react with a rabbit antiserum raised against bovine TeBG.  相似文献   

11.
The quantization of small amounts of chemical denaturants as urea or guanidine hydrochloride in protein solutions after dialysis is a difficult task in the molecular biology laboratory practice. Refractometric methods are useful to quantify a denaturant in the molar range but this methodology is not helpful when the denaturant is present in small amounts. The method herein described is a new comparative method that requires, a priori, the quantification of the stock solutions of urea (8 M) and guanidine hydrochloride (6 M) by refractometry to prepare by sequential dilution the standards used for comparison in the spectropolarimeter. The method is based on the observation that the wavelengths, at which the absorbance of polarized light increases in the far-UV region, as observed by spectropolarimetry, is related to the concentration of the chemical denaturant present in the protein solution. In the quantitation method herein reported, the urea and guanidine hydrochloride detection limits range from 1.2 x 10(-4) to 6 x 10(-6) M depending on the protein dialysis buffer used for a standard cell path length of 1 cm. The sensibility of this method results to be comprised in a range 4-5 orders of magnitude higher than that measured by refractometry. The determinations in both the sample and the control preparations are virtually completed within approximately 10 min.  相似文献   

12.
The ionization of tyrosine residues in diazotized pepsin under various solvent conditions was studied. All tyrosyl residues of the protein titrated normally with a pK of 10.02 in 6 M guanidine hydrochloride solution. On the other hand, two stages in the phenolic group titration curve were observed for the inactivated protein in the absence of guanidine hydrochloride; only about 10 tyrosine residues ionized reversibly up to pH 11, above which titration was irreversible. The irreversible titration zone corresponds to the pH range 11--13 in which unfolding, leading to the random coil state, was shown to occur by circular dichroism and viscosity measurements. The number of tyrosine residues exposed in the native and alkali-denatured (pH 7.5) states of diazotized protein were also studied by solvent perturbation techniques; 10 and 12 groups are exposed in the native and denatured states, respectively.  相似文献   

13.
T Y Tsong 《Biochemistry》1975,14(7):1542-1547
Previous work has shown that at neutral pH ferricytochrome c (horse heart) retains certain residual structures in concentrated solutions of urea or guanidine hydrochloride (Tsong, T. Y. (1974), J. Biol. Chem. 249, 1988). Present studies reveal that cooperative unfolding of these residual structures can be achieved by acidification of the protein to pH 4 in 9 M urea but can only be partially achieved in a 6 M guanidine hydrochloride solution. The evidence that the residual structures unfold in 9 M urea upon acidification is twofold. (1) Further uncoupling of the Trp-59-heme interaction occurs; this is reflected in the intensification of the tryptophan fluorescence from 55 to 90 percent relative to that of free tryptophan in the same solvent. (2) The intrinsic viscosity of the protein solution increases from 15.0 to 21 ml/g. The acidification also induces a spin-state transformation of the heme group at pH 5 both in urea and in guanidine hydrochloride. Acidic titration of the protein in urea and guanidine hydrochloride indicates that the unfolding involves the absorption of a single proton. However, the kinetics of the spin-state transformation are triphasic. These results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps. The ineffectiveness of guanidine hydrochloride as a denaturant for ferricytochrome c is shown to be due to the presence of the high concentration of Cl minus which can stabilize certain elements of the protein structure.  相似文献   

14.
Simian adenovirus 20 DNA was specifically cleavered by restriction endonucleases EcoRI, BamHI, XbaI and HindIII. The transformation activity of the DNA digest was investigated. BamHI, XbaI, and HindII DNA digests were able to transform the primary rat kidney cell culture (Wistar) as well as the native SV20 DNA. The transforming activity was revealed in a specific fragment of the viral DNA, obtained after the treatment of the DNA with BamHI (fragment B), with molecular weight 5.4 x 10(6) dalton. This fragment is located in the left end of the viral genome. The lack of cell transformation by the EcoRI-hydrolysate of viral DNA may serve a proof of the extremely left position of the oncogene in the viral genome, since of EcoRI-fragment chips off a fragment with molecular weight 3 x 10(5) dalton fr om the left side of DNA molecule.  相似文献   

15.
Uridine diphosphoglucose dehydrogenase (EC 1.1.1.22: UDPglucose dehydrogenase) at pH 5.5-7.8 is a stable homohexamer of 305 +/- 7 kDa that does not undergo concentration-dependent dissociation at enzyme concentrations greater than 5 micrograms/mL. Chemical cross-linking of the native enzyme at varying glutaraldehyde concentrations yields dimers, tetramers, and hexamers; at greater than 2% (w/v) glutaraldehyde, plateau values of 21% monomers, 16% dimers, 5% tetramers, and 58% hexamers are obtained. Dissociation at acid pH (pH 2.3) or in 4-6 M guanidine hydrochloride leads to inactive monomers (Mr 52,000). Denaturation at increasing guanidine hydrochloride concentration reveals separable unfolding steps suggesting the typical domain structure of dehydrogenases holds for the present enzyme. At greater than 4 M guanidine hydrochloride complete randomization of the polypeptide chains is observed after 10-min denaturation. Reconstitution of the native hexamer after dissociation/denaturation has been monitored by reactivation and glutaraldehyde fixation. The kinetics may be described in terms of a sequential uni-bimolecular model, governed by rate-determining folding and association steps at the monomer level. Trimeric intermediates do not appear in significant amounts. Reactivation is found to parallel hexamer formation. Structural changes during reconstitution (monitored by circular dichroism) are characterized by complex kinetics, indicating the rapid formation of "structured monomers" (with most of the native secondary structure) followed by slow "reshuffling" prior to subunit association. The final product of reconstitution is indistinguishable from the initial native enzyme.  相似文献   

16.
The ferroxidase II protein from human serum is large and structurally complex. It possesses protein-bound lipid and copper components which are essential for the maintenance of its catalytic activity. Treatment of ferroxidase II with 8 M urea, 6 M guanidine hydrochloride, or 6 M guanidine hydrochloride and alkylation does not result in the dissociation of the enzyme into subunits. However, treatment with sodium dodecyl sulfate results in the dissociation of ferroxidase II into two nonidentical subunits, designated S-I and S-II. S-I contains little phospholipid, cholesterol, or copper and has a molecular weight of 3.8-3.9 X 10(5). In contrast, S-II contains bound phospholipid, cholesterol, and copper and has a molecular weight of 2.2-2.4 X 10(5). The lipid compositon of S-II is identical with the native enzyme. Sodium dodecyl sulfate-free S-I exhibits no ferroxidase activity. Immediately following removal of sodium dodecyl sulfate, S-II exhibits ferroxidase activity but S-II rapidly loses its activity in the absence of S-I. The separated subunits spontaneously reassociate upon removal of the sodium dodecyl sulfate to yield a fully active enzyme which chemically appears identical with native ferroxidase II. Furthermore, the reconstituted enzyme is stable. Both native and reconstituted ferroxidase II may be stored at 4 degrees C for 6 weeks without any loss in activity. This suggests that S-II, the copper and lipid-containing subunit, is the catalytic subunit and that S-I is essential for the stabilization of the enzymic activity of S-II. These results provide insight into the molecular structure and chemical composition of ferroxidase II and suggest that the complete native structure of ferroxidase II is required for the maintenance of i-s functional integrity.  相似文献   

17.
The binding characteristics of partially purified glucocorticoid receptor complexes from hormone sensitive, non-differentiating BCL1 cells to sequentially deproteinized BCL1 chromatin-cellulose was investigated. [3H]Triamcinolone acetonide (TA)-receptor complexes were purified (approx. 30-fold) from DEAF-cellulose columns by salt elution which allowed receptor activation only in the absence of molybdate. Addition of 10 mM molybdate completely blocked salt activation. The binding pattern of the activated [3H]TA-receptor complexes to chromatin-cellulose extracted with 0–8 M guanidine hydrochloride revealed three regions of increased binding activity (acceptor sites), at 2, 5 and 7 M guanidine hydrochloride. Acceptor site binding was markedly reduced for chromatin extracted with 3, 6 and 8 M guanidine hydrochloride. Non-activated receptor complexes demonstrated very low binding to deproteinized chromatin. It was also shown that chromatin binding required glucocortical receptors and that free ligand or ligand bound to other proteins did not bind significantly to chromatin. In addition, binding of [3H]TA-receptor complexes to partially deproteinized chromatin was competable by unlabeled TA-receptor complexes. Scatchard analysis demonstrated that chromatin from non-differentiating BCL1 cells possesses multiple, high-affinity binding sites which differ in their affinity for the glucocorticoid receptor. Partially deproteinized chromatin from lipopolysaccharide-stimulated BCL1 cells demonstrated a different pattern of receptor binding, i.e., receptor binding was significantly greater to chromatin previously extracted with 6–8 M guanidine hydrochloride. These results suggest that differentiation alters the state of chromatin and the interaction of non-histone protein/DNA acceptor sites with glucocorticoid receptors. These alterations may play a role in the acquisition of hormone resistance.  相似文献   

18.
Pennisetin, the alcohol soluble storage protein of pearl millet (Pennisetum americanum), was isolated in a homogeneous state. The intrinsic viscosity [n] of this protein was found to be in the range of 16.5-17.7 ml/g in 70% (v/v) aqueous ethanol. The [eta] changed marginally when temperature was increased from 20 to 70 degrees C and also in the presence of 10 mM NaCl. The data indicated that pennisetin was a rigid, rod shaped asymmetric hydrodynamic particle with molecular dimensions in the range of 301 x 14.4 A - 317.7 x 14.2 A. During denaturation with guanidine hydrochloride (Gdn.HCl), the intrinsic viscosity of pennisetin increased from 16 to 25ml/g with a mid point at 3.6 M of the denaturant. The native protein structure was unfolded in 6 M Gdn.HCl as shown by the exposure of aromatic amino acid residues buried in the native state and this transition was found to be reversible. The intrinsic viscosity of pennisetin in 5.9 M Gdn.HCl corresponded to Mr 25,000 which was comparable to that determined by SDS-PAGE.  相似文献   

19.
A plasmid marker rescue system based on restoration of the nptII gene was established in Streptococcus gordonii to study the transfer of bacterial and transgenic plant DNA by transformation. In vitro studies revealed that the marker rescue efficiency depends on the type of donor DNA. Plasmid and chromosomal DNA of bacteria as well as DNA of transgenic potatoes were transferred with efficiencies ranging from 8.1 x 10(-6) to 5.8 x 10(-7) transformants per nptII gene. Using a 792-bp amplification product of nptII the efficiency was strongly decreased (9.8 x 10(-9)). In blood sausage, marker rescue using plasmid DNA was detectable (7.9 x 10(-10)), whereas in milk heat-inactivated horse serum (HHS) had to be added to obtain an efficiency of 2.7 x 10(-11). No marker rescue was detected in extracts of transgenic potatoes despite addition of HHS. In vivo transformation of S. gordonii LTH 5597 was studied in monoassociated rats by using plasmid DNA. No marker rescue could be detected in vivo, although transformation was detected in the presence of saliva and fecal samples supplemented with HHS. It was also shown that plasmid DNA persists in rat saliva permitting transformation for up to 6 h of incubation. It is suggested that the lack of marker rescue is due to the absence of competence-stimulating factors such as serum proteins in rat saliva.  相似文献   

20.
The adenovirus precursor to the terminal protein (pTP), expressed in a vaccinia virus expression system or in native adenovirus, was assayed for its ability to interact with the nuclear matrix. Biochemical function was measured by determining the relative amount of pTP protein or of adenovirus DNA that remained associated with the nuclear matrix after extensive washing. pTP was retained on the matrix whereas beta-galactosidase was not, as assayed by quantitative immunoblot analysis. Nuclear matrix isolated from adenovirus-infected HeLa cells retained bound adenovirus DNA even when washed with 1 M guanidine hydrochloride; this interaction could be inhibited by added purified pTP protein. Analogous experiments with matrix isolated from HeLa cells infected with a recombinant vaccinia virus that expressed pTP showed a similar retention of pTP protein; this association could also be inhibited by added pTP protein. Binding of pTP to nuclear matrix isolated from uninfected cells was saturable, with an apparent Kd of 250 nM and an estimated 2.8 x 10(6) sites for pTP binding per cell nucleus. The association of pTP with matrix is postulated to help direct adenovirus replication complexes to the appropriate locale within the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号