首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA chromosomal region of Streptomyces argillaceus ATCC 12596, the producer organism of the antitumor polyketide drug mithramycin, was cloned. Sequence analysis of this DNA region, located between four mithramycin glycosyltransferase genes, showed the presence of two genes (mtmMI and mtmMII) whose deduced products resembled S-adenosylmethionine-dependent methyltransferases. By independent insertional inactivation of both genes nonproducing mutants were generated that accumulated different mithramycin biosynthetic intermediates. The M3DeltaMI mutant (mtmMI-minus mutant) accumulated 4-demethylpremithramycinone (4-DPMC) which lacks the methyl groups at carbons 4 and 9. The M3DeltaM2 (mtmMII-minus mutant) accumulated 9-demethylpremithramycin A3 (9-DPMA3), premithramycin A1 (PMA1), and 7-demethylmithramycin, all of them containing the O-methyl group at C-4 and C-1', respectively, but lacking the methyl group at the aromatic position. Both genes were expressed in Streptomyces lividans TK21 under the control of the erythromycin resistance promoter (ermEp) of Saccharopolyspora erythraea. Cell-free extracts of these clones were precipitated with ammonium sulfate (90% saturation) and assayed for methylation activity using different mithramycin intermediates as substrates. Extracts of strains MJM1 (expressing the mtmMI gene) and MJM2 (expressing the mtmMII gene) catalyzed efficient transfer of tritium from [(3)H]S-adenosylmethionine into 4-DPMC and 9-DPMA3, respectively, being unable to methylate other intermediates at a detectable level. These results demonstrate that the mtmMI and mtmMII genes code for two S-adenosylmethionine-dependent methyltransferases responsible for the 4-O-methylation and 9-C-methylation steps of the biosynthetic precursors 4-DPMC and 9-DPMA3, respectively, of the antitumor drug mithramycin. A pathway is proposed for the last steps in the biosynthesis of mithramycin involving these methylation events.  相似文献   

2.
3.
The Escherichia coli Ada protein repairs O6-methylguanine residues and methyl phosphotriesters in DNA by direct transfer of the methyl group to a cysteine residue located in its C- or N-terminal domain, respectively. Methyl transfer to the N-terminal domain causes it to acquire a sequence-specific DNA binding activity, which directs binding to the regulatory region of several methylation-resistance genes. In this paper we show that the N-terminal domain of Ada contains a high-affinity binding site for a single zinc atom, whereas the C-terminal domain is free of zinc. The metal-binding domain is apparently located within the first 92 amino acids of Ada, which contains four conserved cysteine residues. We propose that these four cysteines serve as the zinc ligand residues, coordinating the metal in a tetrahedral arrangement. One of the putative ligand residues, namely, Cys69, also serves as the acceptor site for a phosphotriester-derived methyl group. This raises the possibility that methylation-dependent ligand reorganization about the metal plays a role in the conformational switching mechanism that converts Ada from a non-sequence-specific to a sequence-specific DNA-binding protein.  相似文献   

4.
Keniry MA  Owen EA  Shafer RH 《Biopolymers》2000,54(2):104-114
Mithramycin and chromomycin, two antitumor drugs, each having an identical aglycone and nearly identical disaccharide and trisaccharide side chains, have differing binding properties to a small oligonucleotide, d(ACCCGGGT)(2) (M. A. Keniry et al., Journal of Molecular Biology, 1993, Vol. 231, pp. 753-767). In order to understand the forces that induce four mithramycin molecules to bind to d(ACCCGGGT)(2) instead of two drug molecules in the case of chromomycin, the structure of the 4:2:1 mithramycin: Mg(2+):d(ACCCGGGT)(2) complex was investigated by (1)H-nmr and restrained molecular dynamics. The resulting three-dimensional model showed that in order to accommodate the close approach of one neighboring mithramycin dimer, the inwardly directed CDE saccharide chain of the neighboring mithramycin dimer undergoes a conformational change such that the E saccharide no longer spans the minor groove but reorients so that the hydrophilic face of the E saccharides from the two dimers oppose each other. Two hydrogen bonds are formed between the hydroxyl groups of the two opposing E saccharide groups. The results are interpreted in terms of the differences in stereochemistry and functional group substitutions between mithramycin and chromomycin. A mithramycin dimer is able to self-associate on an oligonucleotide template because it has two hydroxyl groups on the same face of its terminal E saccharide. A chromomycin dimer is unable to self-associate because one of these hydroxyl groups is acetylated and the neighboring hydroxyl group has a stereochemistry that cannot permit close contact of the hydroxyl group with a neighbouring chromomycin dimer.Copyright 2000 John Wiley & Sons, Inc.  相似文献   

5.
Aureolic acid group compounds, such as chromomycin A3(CHM) and mithramycin (MIT), are known as antitumor drugs. Recently we isolated a novel aureolic acid group antitumor drug, UCH9, from Streptomyces sp. The chemical structure of UCH9 is unique in that mono- (A ring) and tetrasaccharide (B-E rings) segments and a longer hydrophobic sidechain are attached to the chromophore, while di- and trisaccharide segments and a methyl group are attached to it in the cases of CHM and MIT. It has been shown by two-dimensional agarose gel electrophoresis that the three drugs cause DNA unwinding, UCH9 causing less than the others. A photo-CIDNP experiment has revealed that UCH9 binds to the minor groove of DNA. The structure of the UCH9-d(TTGGCCAA)2 complex has been determined by 1H NMR and simulated annealing calculations. The obtained structure indicates that UCH9 binds as a dimer to the minor groove of d(TTGGCCAA)2, like CHM and MIT, but that the structural change in DNA induced on binding of UCH9 is moderate in comparison with those on binding of the other two drugs. It turns out that the dimer structure of UCH9, stabilized presumably through a hydrophobic interaction involving the A, D and E rings and the hydrophobic sidechain is different from that of CHM and thus DNA can interact with UCH9 in the minor groove with a moderate structural change.  相似文献   

6.
Flaviviruses encode a single methyltransferase domain that sequentially catalyzes two methylations of the viral RNA cap, GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA, by using S-adenosyl-l-methionine (SAM) as a methyl donor. Crystal structures of flavivirus methyltransferases exhibit distinct binding sites for SAM, GTP, and RNA molecules. Biochemical analysis of West Nile virus methyltransferase shows that the single SAM-binding site donates methyl groups to both N7 and 2'-O positions of the viral RNA cap, the GTP-binding pocket functions only during the 2'-O methylation, and two distinct sets of amino acids in the RNA-binding site are required for the N7 and 2'-O methylations. These results demonstrate that flavivirus methyltransferase catalyzes two cap methylations through a substrate-repositioning mechanism. In this mechanism, guanine N7 of substrate GpppA-RNA is first positioned to SAM to generate m(7)GpppA-RNA, after which the m(7)G moiety is repositioned to the GTP-binding pocket to register the 2'-OH of the adenosine with SAM, generating m(7)GpppAm-RNA. Because N7 cap methylation is essential for viral replication, inhibitors designed to block the pocket identified for the N7 cap methylation could be developed for flavivirus therapy.  相似文献   

7.
Mithramycin is a glycosylated aromatic polyketide produced by Streptomyces argillaceus, and is used as an antitumor drug. Three genes (mtmV, mtmU and mtmC) from the mithramycin gene cluster have been cloned, and characterized by DNA sequencing and by analysis of the products that accumulate in nonproducing mutants, which were generated by insertional inactivation of these genes. The mtm V gene codes for a 2,3-dehydratase that catalyzes early and common steps in the biosynthesis of the three sugars found in mithramycin (D-olivose, D-oliose and D-mycarose); its inactivation caused the accumulation of the nonglycosylated intermediate premithramycinone. The mtmU gene codes for a 4-ketoreductase involved in D-oliose biosynthesis, and its inactivation resulted in the accumulation of premithramycinone and premithramycin A , the first glycosylated intermediate which contains a D-olivose unit. The third gene, mtmC, is involved in D-mycarose biosynthesis and codes for a C-methyltransferase. Two mutants with lesions in the mtmC gene accumulated mithramycin intermediates lacking the D-mycarose moiety but containing D-olivose units attached to C-12a in which the 4-keto group is unreduced. This suggests that mtmC could code for a second enzyme activity, probably a D-olivose 4-ketoreductase, and that the glycosyltransferase responsible for the incorporation of D-olivose (MtmGIV) shows some degree of flexibility with respect to its sugar co-substrate, since the 4-ketoanalog is also transferred. A pathway is proposed for the biosynthesis of the three sugar moieties in mithramycin.  相似文献   

8.
Methanopterin (MPT) and its analogs are coenzymes required for methanogenesis and methylotrophy in specialized microorganisms. The methyl groups at C-7 and C-9 of the pterin ring distinguish MPT from all other pterin-containing natural products. However, the enzyme(s) responsible for the addition of these methyl groups has yet to be identified. Here we demonstrate that a putative radical S-adenosyl-l-methionine (SAM) enzyme superfamily member encoded by the MJ0619 gene in the methanogen Methanocaldococcus jannaschii is likely this missing methylase. When MJ0619 was heterologously expressed in Escherichia coli, various methylated pterins were detected, consistent with MJ0619 catalyzing methylation at C-7 and C-9 of 7,8-dihydro-6-hydroxymethylpterin, a common intermediate in both folate and MPT biosynthesis. Site-directed mutagenesis of Cys77 present in the first of two canonical radical SAM CX3CX2C motifs present in MJ0619 did not inhibit C-7 methylation, while mutation of Cys102, found in the other radical SAM amino acid motif, resulted in the loss of C-7 methylation, suggesting that the first motif could be involved in C-9 methylation, while the second motif is required for C-7 methylation. Further experiments demonstrated that the C-7 methyl group is not derived from methionine and that methylation does not require cobalamin. When E. coli cells expressing MJ0619 were grown with deuterium-labeled acetate as the sole carbon source, the resulting methyl group on the pterin was predominantly labeled with three deuteriums. Based on these results, we propose that this archaeal radical SAM methylase employs a previously uncharacterized mechanism for methylation, using methylenetetrahydrofolate as a methyl group donor.  相似文献   

9.
The preferred binding sites for mithramycin on four different DNA fragments have been investigated by DNAase I footprinting. Sites containing at least two contiguous GC base pairs are protected by the antibiotic, the preferred binding site consisting of the dinucleotide step GpG (or CpC). Related antibiotics chromomycin and olivomycin produce similar, but not identical footprinting patterns suggesting that they can recognize other sequences as well. All three antibiotics induce enhanced rates of enzyme cleavage at regions flanking some of their binding sites. These effects are generally observed in runs of A and T and are attributed to DNA structural variations induced in the vicinity of the ligand binding site. The reaction of dimethylsulphate with N7 of guanine was modified by the presence of mithramycin so that we cannot exclude the possibility that these antibiotics bind to DNA via the major groove.  相似文献   

10.
Two proteins in the rat, androgen binding protein (ABP) and the cytoplasmic receptor (CR), have high affinity and limited capacity for binding androgens. To determine the structural requirements for binding with high affinity, each protein was partially purified and the ability of over 100 steroids to compete with [3H]dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one) for binding sites was assessed. The results indicate marked differences in the steroid specificities of the two proteins. Some alterations of dihydrotestosterone at C-2 or C-2 and C-3 increase binding to ABP two to four-fold. Similarly, the affinity of 17 beta-hydroxy-7 alpha-methyl-4-estren-3-one for ABP increases two-fold when a double bond is created at C-14. Addition of a methyl group in the alpha position at C-7 or C-17, or an ethinyl group at C-17 cause little change in affinity; however, modifications at C-11 and C-17 beta, and deletion of the methyl group at C-10 significantly impair binding to ABP. Binding to the CR is maintained or increased by deletion of the methyl group at C-10. Binding is lessened by modifications at C-3 and C-17 beta. Most alterations at C-2, C-7, C-11, and C-17 alpha have only minor effects on binding to the CR. These studies should provide a molecular basis for predicting the effects of specific structural modifications. When some modifications at C-2 or C-2 and C-3 are combined with changes at C-17 beta, the resulting steroids retain very high affinity for ABP and very limited binding to the CR. Such steroids may provide a means for assessing the function of ABP.  相似文献   

11.
The binding of mithramycin A to the d(A1T2G3C4A5T6) duplex was investigated by 1H NMR and found to be similar to that of its analogue chromomycin A3. In the presence of Mg2+, mithramycin binds strongly to d(ATGCAT)2. On the basis of the two-dimensional NOESY spectrum, the complex formed possesses C2 symmetry at a stoichiometry of two drugs per duplex (2:1) and is in slow chemical exchange on the NMR time scale. NOESY experiments reveal contacts from the E-pyranose of mithramycin to the terminal and nonterminal adenine H2 proton of DNA and from the drug hydroxyl proton to both G3NH2 protons, C4H1' proton, and A5H1' proton. These data place the drug chromophore and E pyranose on the minor groove side of d(ATGCAT)2. NOE contacts from the A-, B-, C-, and D-pyranoses of mithramycin to several deoxyribose protons suggest that the A- and B-rings are oriented along the sugar-phosphate backbone of G3-C4, while the C- and D-rings are located along the sugar-phosphate backbone of A5-T6. These drug-DNA contacts are very similar to those found for chromomycin binding to d(ATGCAT)2. Unlike chromomycin, the NOESY spectrum of mithramycin at the molar ratio of one drug per duplex reveals several chemical exchange cross-peaks corresponding to the drug-free and drug-bound proton resonances. From the intensity of these cross-peaks and the corresponding diagonal peaks, the off-rate constant was estimated to be 0.4 s-1. These data suggest that the exchange rate of mithramycin binding to d(ATGCAT)2 is faster than that of chromomycin.  相似文献   

12.
Regioselectivity of 7-O-methyltransferase of poplar to flavones   总被引:1,自引:0,他引:1  
POMT-7, an O-methyltransferase from poplar (Populus deltoids) was used to modify a variety of flavonoid compounds. POMT-7 was able to transfer a methyl group to several flavonoids containing a C-7 hydroxyl group. However, POMT-7 showed a higher affinity toward flavonol and flavone such as apigenin, kaempferol, luteolin, and quercetin than flavanone and isoflavone. Based on comparison of HPLC retention times with authentic compounds and corresponding nuclear magnetic resonance spectroscopy data, the methylation position of the reaction products was determined to be at the hydroxyl group of C-7. Biotransformation kinetics indicated that the enzyme converted more than 80% of the apigenin, kaempferol, luteolin and quercetin substrates, which were added at concentration of 70 microM, into corresponding 7-methoxy compounds within 24 h.  相似文献   

13.
Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m7G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m4Cm1402 and m5C1407. Modification at m5C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m4Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell''s own indigenous methyltransferases can play an important role in determining resistance levels.  相似文献   

14.
Zhou Y  Ray D  Zhao Y  Dong H  Ren S  Li Z  Guo Y  Bernard KA  Shi PY  Li H 《Journal of virology》2007,81(8):3891-3903
The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA-->m7GpppA-->m7GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 A resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.  相似文献   

15.
Liu L  Dong H  Chen H  Zhang J  Ling H  Li Z  Shi PY  Li H 《生物学前沿》2010,5(4):286-303
Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m7GpppA → m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2′-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2′-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.  相似文献   

16.
M13 DNAs in which carbon 5 of each deoxycytidine residue in one strand is replaced with a bulky group are very good substrates for human DNA (cytosine-5) methyltransferase. Rate enhancements of up to 35 fold are obtained depending on the size of the moiety at C-5. The enzyme appears optimally suited to sense a methyl group in one strand at this position. Alkaline density gradient analyses of the distribution of methyl groups applied to 5-BrdCyd or 5-IdCyd substituted DNA reveal that these groups serve to direct the enzyme to methylate the unsubstituted strand.  相似文献   

17.
The product of the dcm gene is the only DNA cytosine-C5 methyltransferase of Escherichia coli K-12; it catalyses transfer of a methyl group from S-adenosyl methionine (SAM) to the C-5 position of the inner cytosine residue of the cognate sequence CCA/TGG. Sequence-specific, covalent crosslinking of the enzyme to synthetic oligonucleotides containing 5-fluoro-2'-deoxycytidine is demonstrated. This reaction is abolished if serine replaces the cysteine at residue #177 of the enzyme. These results lend strong support to a catalytic mechanism in which an enzyme sulfhydryl group undergoes Michael addition to the C5-C6 double bond, thus activating position C-5 of the substrate DNA cytosine residue for electrophilic attack by the methyl donor SAM. The enzyme is capable of self-methylation in a DNA-independent reaction requiring SAM and the presence of cysteine at position #177.  相似文献   

18.
Bacteriochlorophyll (BChl) c is the major photosynthetic pigment in the green sulfur bacterium Chlorobaculum tepidum, in which it forms protein-independent aggregates that function in light harvesting. BChls c, d, and e are found only in chlorosome-producing bacteria and are unique among chlorophylls because of methylations that occur at the C-8(2) and C-12(1) carbons. Two genes required for these methylation reactions were identified and designated bchQ (CT1777) and bchR (CT1320). BchQ and BchR are members of the radical S-adenosylmethionine (SAM) protein superfamily; each has sequence motifs to ligate a [4Fe-4S] cluster, and we propose that they catalyze the methyl group transfers. bchQ, bchR, and bchQ bchR mutants of C. tepidum were constructed and characterized. The bchQ mutant produced BChl c that was not methylated at C-8(2), the bchR mutant produced BChl c that was not methylated at C-12(1), and the double mutant produced [8-ethyl, 12-methyl]-BChl c that lacked methylation at both the C-8(2) and C-12(1) positions. Compared to the wild type, the Qy absorption bands for BChl c in the mutant cells were narrower and blue shifted to various extents. All three mutants grew slower and had a lower cellular BChl c content than the wild type, an effect that was especially pronounced at low light intensities. These observations show that the C-8(2) and C-12(1) methylations of BChl c play important roles in the adaptation of C. tepidum to low light intensity. The data additionally suggest that these methylations also directly or indirectly affect the regulation of the BChl c biosynthetic pathway.  相似文献   

19.
R C Snyder  R Ray  S Blume  D M Miller 《Biochemistry》1991,30(17):4290-4297
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号