首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.  相似文献   

3.
目的:探讨缺氧对人食管癌细胞Eca109增殖及凋亡的影响及其作用机制,为食管癌的诊断和治疗提供新的思路和路径。方法:以终浓度为250μmol/L氯化钴模拟缺氧环境,将人食管癌细胞Eca109于常氧及缺氧条件下分别培养12 h、24 h、36 h、48 h,采用倒置相差显微镜观察细胞生长情况,MTT法检测细胞增殖情况,利用细胞活力分析仪NC-3000检测各组细胞凋亡情况。结果:相对于常氧对照组而言,缺氧后各组Eca109细胞增殖减弱,凋亡细胞比率明显升高,其中以缺氧24 h的凋亡细胞比率最高,缺氧36 h的凋亡细胞比率较缺氧24 h时有所回落。结论:缺氧可以抑制人食管癌细胞Eca109的增殖并诱导其凋亡。  相似文献   

4.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

5.
6.
Apoptosis is an important process in development and tissue homeostasis. To understand the similarities and differences in the apoptosis machinery in different normal, developmental, and diseased tissues, the expression profiles of 109 apoptosis-pathway-related genes in 82 mouse tissues and experimental conditions were examined using Incyte Mouse GEMI cDNA arrays. It has been found that the compositions of the apoptotic machinery vary among different tissues, developmental stages, and disease states, with subsets of apoptotic genes co-ordinately expressed in the 82 tissues and experimental conditions. Additional genes whose expression profiles resemble selected genes from the 109 apoptotic gene list were also identified. This study provides valuable information on possible molecular mechanisms of differential apoptotic responses to developmental signals, environmental stimuli, and therapeutic treatments in tissue-specific manner.  相似文献   

7.
《Phytomedicine》2014,21(3):348-355
Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. Harmine is reported as a promising drug candidate for cancer therapy; however, effects and action mechanism of harmine on the human gastric cancer cells remain unclear. This study evaluated the anti-tumor effects of harmine on human gastric cancer both in vitro and in vivo. The cell proliferation was determined using MTT colorimetric assay. Apoptosis was measured by DAPI staining and flow cytometry analysis. The wound healing and transwell invasion assays were performed to evaluate the effects of harmine on the migration and invasion of gastric cancer cells. The expression of COX-2, proliferating cell nuclear antigen (PCNA), Bcl-2, Bax and matrix metalloproteinase-2 (MMP-2) was detected by Western blot analysis. Our results showed that harmine significantly inhibited cellular proliferation, migration, invasion and induced apoptosis in vitro, as well as inhibited tumor growth in vivo. In addition, harmine significantly inhibited the expression of COX-2, PCNA, Bcl-2 and MMP-2 as well as increased Bax expression in gastric cancer cells. These results collectively indicate that harmine induces apoptosis and inhibits proliferation, migration and invasion of human gastric cancer cells, which may be mediated by down-regulation of COX-2 expression.  相似文献   

8.
Hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix, has regulatory influences on cells and cellular activities. To explore the effects of a high concentration (1 mg/mL) of high molecular weight HA (500-730 kD) on U937 macrophage growth dynamics, three factors that influence overall cellular growth, namely proliferation, apoptosis, and cell death, were examined. Cells were cultured with HA and were analyzed by flow cytometry every 24 hours during a 168-hour period for proliferation and the presence of apoptotic and dead cells. These analyses demonstrated that HA inhibits U937 macrophage proliferation in a time-dependent manner. Through the first 72 hours, cells exhibited slowed proliferation. However, no evidence of cell division arrest or reduced cell viability was observed. Thereafter, HA continued to diminish proliferation, but induced apoptosis. This data is consistent with regulatory influences secondary to HA binding to CD44 and/or RHAMM cell surface receptors, both of which were shown to be expressed on U937 macrophages. This study demonstrates that a high concentration of high molecular weight HA greatly inhibits macrophage population growth by the dual actions of impeding cell proliferation and inducing apoptosis.  相似文献   

9.
Orthosiphon aristatus is a traditional folk medicine extensively used in Southeast Asia because of its various pharmacological effects, including antioxidant, antitumor, and hypoglycemic activities. Orthosiphon extracts have been found to be cytotoxic to hepatocellular carcinoma (HCC) cells, which is attributed to their phytochemical content. However, the mechanism of action underlying the cytotoxic effects remains unclear. Hence, the present study investigated the effect of Sinensetin purified from O. aristatus on HCC in vitro. Sinensetin was isolated from O. aristatus leaves and the chemical structure was confirmed by ultra violet (UV)-vis, infrared (IR), nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). The results revealed that 24-h treatment with the purified compound markedly inhibited the survival of HepG2 cells, with IC50 of 39.93 ± 1.10 μg/mL. HepG2 cells treated with the IC50 of Sinensetin showed characteristic morphological changes, as determined by PI and AO/Etbr dual staining, including DNA fragmentation, thus confirming the apoptosis induction. Sinensetin induced cell cycle arrest at G0/G1 phase, and the data were substantiated by flow cytometry. Furthermore, Sinensetin modulated key signaling molecules; anti-apoptotic Bcl-xL was down-regulated, whereas the expressions of tumor suppressors TRAIL and PTEN were up-regulated. We conclude that Sinensetin can be effective against HCC.  相似文献   

10.

Background

Vascular endothelial growth factor (VEGF) is involved in the growth of new blood vessels that feed tumors and kinesin spindle protein (KSP) plays a critical role in mitosis involving in cell proliferation. Simultaneous silencing of VEGF and KSP, an attractive and viable approach in cancer, leads on restricting cancer progression. The purpose of this study is to examine the therapeutic potential of dual gene targeted siRNA cocktail on human hepatocellular carcinoma Hep3B cells.

Results

The predesigned siRNAs could inhibit VEGF and KSP at mRNA level. siRNA cocktail showed a further downregulation on KSP mRNA and protein levels compared to KSP-siRNA or VEGF-siRNA, but not on VEGF expression. It also exhibited greater suppression on cell proliferation as well as cell migration or invasion capabilities and induction of apoptosis in Hep3B cells than single siRNA simultaneously. This could be explained by the significant downregulation of Cyclin D1, Bcl-2 and Survivin. However, no sigificant difference in the mRNA and protein levels of ANG2, involving inhibition of angiogenesis was found in HUVECs cultured with supernatant of Hep3B cells treated with siRNA cocktail, compared to that of VEGF-siRNA.

Conclusion

Silencing of VEGF and KSP plays a key role in inhibiting cell proliferation, migration, invasion and inducing apoptosis of Hep3B cells. Simultaneous silencing of VEGF and KSP using siRNA cocktail yields promising results for eradicating hepatocellular carcinoma cells, a new direction for liver cancer treatment.  相似文献   

11.
12.
Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.  相似文献   

13.
Bioactivity-guided study led to the isolation of a natural phenylpropionate derivative, (E)-3-(4-hydroxy-2-methoxyphenyl)-propenoic acid 4-hydroxy-3-methoxyphenyl ester from the roots of Mirabilis himalaica. Cellular analysis showed that compound 1 specifically inhibited the cancer cell growth through the S phase arrest. Mechanistically, compound 1 was able to induce the apoptosis in HepG2 cells through mitochondrial apoptosis pathway in which Bcl-2 and p53 were required. Interestingly, the cellular phenotype of compound 1 were shown specifically in cancer cells originated from hepatocellular carcinoma (HepG2) while compromised influence by compound 1 were detected within the normal human liver cells (L-02). Consistently, the in vivo inhibitory effects of compound 1 on tumor growth were validated by the in xenograft administrated with HepG2 cells. Our results provided a novel compound which might serve as a promising candidate and shed light on the therapy of the hepatocellular carcinoma.  相似文献   

14.
Zhang M  Wang B  Ni YH  Liu F  Fei L  Pan XQ  Guo M  Chen RH  Guo XR 《Life sciences》2006,79(15):1428-1435
Uncoupling proteins are a family of mitochondrial proteins involved in energy metabolism. We previously showed that uncoupling protein 4 (UCP4) is differentially expressed in omental adipose tissue in diet-induced obese and normal rats. However, the effect of UCP4 on adipocytes is unclear. In this work, we established a stable preadipocyte cell line overexpressing UCP4 to observe the direct effect of UCP4 on adipocytes. Cells overexpressing UCP4 showed significantly attenuated differentiation of preadipocytes into adipocytes. During differentiation, expression of adipogenesis-associated markers such as fatty acid synthetase, peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein alpha, adipocyte lipid binding protein and lipoprotein lipase were downregulated. Preadipoctes expressing UCP4 grew faster and more of them stayed in S phase compared to control cells. In addition, UCP4 overexpression protected preadipocytes from apoptosis induced by serum deprivation. Our results demonstrate that overexpression of UCP4 can promote proliferation and inhibit apoptosis and differentiation of preadipocytes.  相似文献   

15.
Lung cancer is the leading cause of cancer-related mortality all over the world. In recent years, pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries. Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers. Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as: organosulfer compounds, OSC). DATS can induce apoptosis and inhibit the growth of many cancer cell lines. Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondria-dependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3, -8, and -9. Eventually, DATS induced the apoptosis and inhibited the proliferation in a concentration- and time-dependent manner. Furthermore, by establishing an animal model of female BALB/c nude mice with A549 xenografts, we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group. All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug.  相似文献   

16.
目的从细胞增殖和凋亡两方面观察BCG对乳腺癌细胞MDA—MB-231的抑制作用。方法用MTT法检测BCG作用后MDA—MB-231细胞的增殖能力,采用TUNEL法检测凋亡。结果BCG能明显降低MDA-MB-231细胞的增殖代谢活性而抑制其增殖。TUNEL法染色显示BCG可显著增加凋亡细胞。结论BCG不仅能显著抑制MDA—MB-231细胞增殖,还能有效诱导其凋亡。  相似文献   

17.
The relatively recent discovery of miRNAs has added a completely new dimension to the study of the regulation of gene expression. The mechanism of action of miRNAs, the conservation between diverse species and the fact that each miRNA can regulate a number of targets and phenotypes clearly indicates the importance of these molecules. In this review the current state of knowledge relating to miRNA expression and gene regulation is presented, outlining the key morphological and biochemical features controlled by miRNAs with particular emphasis on the key phenotypes that impact on cell growth in bioreactors, namely proliferation and apoptosis.  相似文献   

18.
Betulinic acid (BA) is a pentacyclic triterpenoids extracted from birch with a wide range of biological properties. Recent studies have shown that BA has significant cytotoxicity to various types of human cancer cells, and shows potential in cancer treatment. However, the efficacy of BA on human colorectal cancer tumor cells is still unclear. The purpose of our study was to evaluate the anti-cancer activity of BA in human colorectal cancer cells in vitro and in vivo to investigate the possible mechanism. In this experiment, we found that BA inhibited colorectal cancer cell lines in vitro with a time-dependent and dose-dependent manner. Moreover, BA could induce cell apoptosis by upregulating expression of Bax and cleaved caspase-3 and downregulating protein of Bcl-2. BA could increase the production of reactive oxygen species and reduce mitochondrial membrane potential of cancer cell, suggesting that BA induced cancer cells apoptosis by mitochondrial mediated pathways. Furthermore, BA significantly inhibited the migration and invasion of colorectal cancer cells, reduced the expression of matrix metalloproteinase (MMPs) and increased the expression of MMPs inhibitor (TIMP-2). In addition, the growth of tumor was significantly suppressed by intraperitoneal administration of 20 mg/kg/day of BA in a xenograft tumor mouse model of HCT-116. Histopathological and immunohistochemical analysis showed that MMP-2+ cells and Ki-67+ cells were reduced and cleaved caspase-3+ cells were increased in tumor tissues of mice after BA administration. The results showed that BA not only promoted the apoptosis of colorectal cancer cells, but also inhibited the metastasis of cancer cells. Our results suggest that BA can be a potential natural drug to inhibit the growth and metastasis of colorectal cancer.  相似文献   

19.
Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50 = 31.1 μM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21Cip1 expression in a p53-dependent manner.  相似文献   

20.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号