首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hopkins BB  Paull TT 《Cell》2008,135(2):250-260
The Mre11/Rad50 complex has been implicated in the early steps of DNA double-strand break (DSB) repair through homologous recombination in several organisms. However, the enzymatic properties of this complex are incompatible with the generation of 3' single-stranded DNA for recombinase loading and strand exchange. In thermophilic archaea, the Mre11 and Rad50 genes cluster in an operon with genes encoding a helicase, HerA, and a 5' to 3' exonuclease, NurA, suggesting a common function. Here we show that purified Mre11 and Rad50 from Pyrococcus furiosus act cooperatively with HerA and NurA to resect the 5' strand at a DNA end under physiological conditions in vitro. The 3' single-stranded DNA generated by these enzymes can be utilized by the archaeal RecA homolog RadA to catalyze strand exchange. This work elucidates how the conserved Mre11/Rad50 complex promotes DNA end resection in archaea and may serve as a model for DSB processing in eukaryotes.  相似文献   

2.
Extensive biochemical and structural analyses have been performed on the putative DNA repair proteins of hyperthermophilic archaea, in contrast to the few genetic analyses of the genes encoding these proteins. Accordingly, little is known about the repair pathways used by archaeal cells at high temperature. Here, we attempted to disrupt the genes encoding the potential repair proteins in the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis. We succeeded in isolating null mutants of the hjc, hef, hjm, xpb, and xpd genes, but not the radA, rad50, mre11, herA, nurA, and xpg/fen1 genes. Phenotypic analyses of the gene-disrupted strains showed that the xpb and xpd null mutants are only slightly sensitive to ultraviolet (UV) irradiation, methyl methanesulfonate (MMS) and mitomycin C (MMC), as compared with the wild-type strain. The hjm null mutant showed sensitivity specifically to mitomycin C. On the other hand, the null mutants of the hjc gene lacked increasing sensitivity to any type of DNA damage. The Hef protein is particularly important for maintaining genome homeostasis, by functioning in the repair of a wide variety of DNA damage in T. kodakaraensis cells. Deletion of the entire hef gene or of the segments encoding either its nuclease or helicase domain produced similar phenotypes. The high sensitivity of the Δhef mutants to MMC suggests that Hef performs a critical function in the repair process of DNA interstrand cross-links. These damage-sensitivity profiles suggest that the archaeal DNA repair system has processes depending on repair-related proteins different from those of eukaryotic and bacterial DNA repair systems using homologous repair proteins analyzed here.  相似文献   

3.
Zhang S  Wei T  Hou G  Zhang C  Liang P  Ni J  Sheng D  Shen Y 《DNA Repair》2008,7(3):380-391
HerA is a novel family DNA helicases that exist ubiquitously in thermophilic archaea. The genes are linked to homologues of eukaryotic recombination and repair proteins Mre11 and Rad50 in some of the genomes. However, the relationship between HerA and the related proteins is unclear. In this study, a homologue from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHerA) was characterized and physical and functional interactions between StoHerA and StoMre11 (Mre11 from S. tokodaii) were studied. It was found that StoHerA was able to unwind blunt-ended double-stranded DNA (dsDNA), although with lower efficiency. StoHerA was also able to unwind Holliday junction, splayed-arm DNA, as well as 5'- or 3'-overhang with high efficiency. Pull-down and yeast two-hybrid analyses revealed that StoHerA interacted with StoMre11 physically. The helicase activity of StoHerA was stimulated by StoMre11, indicating a functional role of this interaction. In addition, site-directed mutagenesis of StoHerA was performed to analyze functions of conserved residues of StoHerA. Interestingly, mutation of E355 to alanine in Walker B resulted in not only loss of ATPase and DNA helicase activities, but also dsDNA-binding ability, indicating that this residue is involved in the coupling of ATP hydrolysis, dsDNA-binding, and helicase activities.  相似文献   

4.
We isolated and characterized a new nuclease (NurA) exhibiting both single-stranded endonuclease activity and 5′–3′ exonuclease activity on single-stranded and double-stranded DNA from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Nuclease homologs are detected in all thermophilic archaea and, in most species, the nurA gene is organized in an operon-like structure with rad50 and mre11 archaeal homologs. This nuclease might thus act in concert with Rad50 and Mre11 proteins in archaeal recombination/repair. To our knowledge, this is the first report of a 5′–3′ nuclease potentially associated with Rad50 and Mre11-like proteins that may lead to the processing of double-stranded breaks in 3′ single-stranded tails.  相似文献   

5.
S Moreau  E A Morgan  L S Symington 《Genetics》2001,159(4):1423-1433
MRE11 functions in several aspects of DNA metabolism, including meiotic recombination, double-strand break repair, and telomere maintenance. Although the purified protein exhibits 3' to 5' exonuclease and endonuclease activities in vitro, Mre11 is implicated in the 5' to 3' resection of duplex ends in vivo. The mre11-H125N mutation, which eliminates the nuclease activities of Mre11, causes an accumulation of unprocessed double-strand breaks (DSBs) in meiosis, but no defect in processing HO-induced DSBs in mitotic cells, suggesting the existence of redundant activities. Mutation of EXO1, which encodes a 5' to 3' exonuclease, was found to increase the ionizing radiation sensitivity of both mre11Delta and mre11-H125N strains, but the exo1 mre11-H125N strain showed normal kinetics of mating-type switching and was more radiation resistant than the mre11Delta strain. This suggests that other nucleases can compensate for loss of the Exo1 and Mre11 nucleases, but not of the Mre11-Rad50-Xrs2 complex. Deletion of RAD27, which encodes a flap endonuclease, causes inviability in mre11 strains. When mre11-H125N was combined with the leaky rad27-6, the double mutants were viable and no more gamma-ray sensitive than the mre11-H125N strain. This suggests that the double mutant defect is unlikely to be due to defective DSB processing.  相似文献   

6.

ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3′ single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.

  相似文献   

7.
Chamankhah M  Fontanie T  Xiao W 《Genetics》2000,155(2):569-576
The yeast Mre11 protein participates in important cellular functions such as DNA repair and telomere maintenance. Analysis of structure-function relationships of Mre11 has led to identification of several separation-of-function mutations as well as N- and C-terminal domains essential for Mre11 meiotic and mitotic activities. Previous studies have established that there is a strong correlation between Mre11 DNA repair and telomere maintenance functions and that Mre11-Rad50-Xrs2 complex formation appears to be essential for both of these activities. Here we report that the mre11(ts) allele, previously shown to cause temperature-dependent defects in DNA repair and meiosis, confers a temperature-independent telomere shortening, indicating that mre11(ts) is a separation-of-function mutation with respect to DNA repair and telomere maintenance. In a yeast two-hybrid system, Mre11(ts) fails to form a homodimer or interact with Rad50 and Xrs2 irrespective of experimental temperatures. These observations collectively suggest that the Pro(162)Ser substitution in Mre11(ts) confers a novel separation of Mre11 mitotic functions. Moreover, we observed that while overexpression of the 5'-3' exonuclease gene EXO1 partially complements the MMS sensitivity of mre11, rad50, and xrs2 null mutants, it has no effect on telomere shortening in these strains. This result provides additional evidence on possible involvement of distinctive mechanisms in DNA repair and telomere maintenance by the Mre11-Rad50-Xrs2 complex.  相似文献   

8.
In Saccharomyces cerevisiae, Mre11p, Rad50p, and Xrs2p function as a multiprotein complex that has a central role in several DNA repair mechanisms. Though Mre11p has both single-stranded and double-stranded 3'-5' exonuclease activity in vitro, null mutants of MRE11, RAD50, and XRS2 exhibit reduced 5'-3' resection of HO-induced double-strand breaks (DSBs) in vivo. In this study, we analyzed four mre11 mutants harboring changes in the N-terminus of Mre11p where the four phosphoesterase motifs specify the in vitro nuclease activities of Mre11p and its homologues. We find that the 5'-3' resection defects in vivo do not correlate with several mitotic phenotypes: non-homologous end-joining (NHEJ), telomere length maintenance, and adaptation to the DNA damage-inducible G2/M checkpoint. Overexpression of the 5'-3' exonuclease Exo1p in a mre11Delta strain partially increased 5'-3' resection and partially suppressed both methyl methanesulfonate (MMS) hypersensitivity and adaptation phenotypes, but did not affect telomere length or NHEJ. Surprisingly, the co-expression of two alleles, mre11-58S and mre11-N113S, each of which confers MMS hypersensitivity and short telomeres, can fully complement the MMS sensitivity and shortened telomere length of mre11Delta cells. We propose that at least two separate activities associated with the N-terminus of Mre11p are required for its mitotic function.  相似文献   

9.
The WRN gene defective in the premature aging disorder Werner syndrome encodes a helicase/exonuclease. We examined the ability of WRN to rescue DNA damage sensitivity of a yeast mutant defective in the Rad50 subunit of Mre11-Rad50-Xrs2 nuclease complex implicated in homologous recombination repair. Genetic studies revealed WRN operates in a yEXO1-dependent pathway to rescue rad50 sensitivity to methylmethane sulfonate (MMS). WRN helicase, but not exonuclease, is required for MMS resistance. WRN missense mutations in helicase or RecQ C-terminal domains interfered with the ability of WRN to rescue rad50 MMS sensitivity. WRN does not rescue rad50 ionizing radiation (IR) sensitivity, suggesting that WRN, in collaboration with yEXO1, is tailored to relieve replicational stress imposed by alkylated base damage. WRN and yEXO1 are associated with each other in vivo. Purified WRN stimulates hEXO1 nuclease activity on DNA substrates associated with a stalled or regressed replication fork. We propose WRN helicase operates in an EXO1-dependent pathway to help cells survive replicational stress. In contrast to WRN, BLM helicase defective in Bloom's syndrome failed to rescue rad50 MMS sensitivity, but partially restored IR resistance, suggesting a delineation of function by the human RecQ helicases.  相似文献   

10.
In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination.  相似文献   

11.
12.
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.  相似文献   

13.
The nuclease NurA and the ATPase HerA are present in all known thermophilic archaea and cooperate with the highly conserved MRE11/RAD50 proteins to facilitate efficient DNA double-strand break end processing during homologous recombinational repair. However, contradictory results have been reported on the exact activities and mutual dependence of these two enzymes. To understand the functional relationship between these two enzymes we deeply characterized Sulfolobus solfataricus NurA and HerA proteins. We found that NurA is endowed with exo- and endonuclease activities on various DNA substrates, including linear (single-stranded and double stranded) as well as circular molecules (single stranded and supercoiled double-stranded). All these activities are not strictly dependent on the presence of HerA, require divalent ions (preferably Mn2+), and are inhibited by the presence of ATP. The endo- and exonculease activities have distinct requirements: whereas the exonuclease activity on linear DNA fragments is stimulated by HerA and depends on the catalytic D58 residue, the endonuclease activity on circular double-stranded DNA is HerA-independent and is not affected by the D58A mutation. On the basis of our results we propose a mechanism of action of NurA/HerA complex during DNA end processing.  相似文献   

14.
Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.  相似文献   

15.
The minichromosome maintenance (MCM) complex is the replicative helicase responsible for unwinding DNA during archaeal and eukaryal genome replication. To mimic long helicase events in the cell, a high-temperature single-molecule assay was designed to quantitatively measure long-range DNA unwinding of individual DNA helicases from the archaeons Methanothermobacter thermautotrophicus (Mth) and Thermococcus sp. 9°N (9°N). Mth encodes a single MCM homolog while 9°N encodes three helicases. 9°N MCM3, the proposed replicative helicase, unwinds DNA at a faster rate compared to 9°N MCM2 and to Mth MCM. However, all three MCM proteins have similar processivities. The implications of these observations for DNA replication in archaea and the differences and similarities among helicases from different microorganisms are discussed. Development of the high-temperature single-molecule assay establishes a system to comprehensively study thermophilic replisomes and evolutionary links between archaeal, eukaryal, and bacterial replication systems.  相似文献   

16.
Structural basis for DNA duplex separation by a superfamily-2 helicase   总被引:6,自引:0,他引:6  
To reveal the mechanism of processive strand separation by superfamily-2 (SF2) 3'-->5' helicases, we determined apo and DNA-bound crystal structures of archaeal Hel308, a helicase that unwinds lagging strands and is related to human DNA polymerase theta. Our structure captures the duplex-unwinding reaction, shows that initial strand separation does not require ATP and identifies a prominent beta-hairpin loop as the unwinding element. Similar loops in hepatitis C virus NS3 helicase and RNA-decay factors support the idea that this duplex-unwinding mechanism is applicable to a broad subset of SF2 helicases. Comparison with ATP-bound SF2 enzymes suggests that ATP promotes processive unwinding of 1 base pair by ratchet-like transport of the 3' product strand. Our results provide a first structural framework for strand separation by processive SF2 3'-->5' helicases and reveal important mechanistic differences from SF1 helicases.  相似文献   

17.
Using complementation tests and nucleotide sequencing, we showed that the rad58-4 mutation was an allele of the MRE11 gene and have renamed the mutation mre11-58. Two amino acid changes from the wild-type sequence were identified; one is located at a conserved site of a phosphodiesterase motif, and the other is a homologous amino acid change at a nonconserved site. Unlike mre11 null mutations, the mre11-58 mutation allowed meiosis-specific double-strand DNA breaks (DSBs) to form at recombination hot spots but failed to process those breaks. DSB ends of this mutant were resistant to lambda exonuclease treatment. These phenotypes are similar to those of rad50S mutants. In contrast to rad50S, however, mre11-58 was highly sensitive to methyl methanesulfonate treatment. DSB end processing induced by HO endonuclease was suppressed in both mre11-58 and the mre11 disruption mutant. We constructed a new mre11 mutant that contains only the phosphodiesterase motif mutation of the Mre11-58 protein and named it mre11-58S. This mutant showed the same phenotypes observed in mre11-58, suggesting that the phosphodiesterase consensus sequence is important for nucleolytic processing of DSB ends during both mitosis and meiosis.  相似文献   

18.
Recently, it has been shown that a predicted P-loop ATPase (the HerA or MlaA protein), which is highly conserved in archaea and also present in many bacteria but absent in eukaryotes, has a bidirectional helicase activity and forms hexameric rings similar to those described for the TrwB ATPase. In this study, the FtsK–HerA superfamily of P-loop ATPases, in which the HerA clade comprises one of the major branches, is analyzed in detail. We show that, in addition to the FtsK and HerA clades, this superfamily includes several families of characterized or predicted ATPases which are predominantly involved in extrusion of DNA and peptides through membrane pores. The DNA-packaging ATPases of various bacteriophages and eukaryotic double-stranded DNA viruses also belong to the FtsK–HerA superfamily. The FtsK protein is the essential bacterial ATPase that is responsible for the correct segregation of daughter chromosomes during cell division. The structural and evolutionary relationship between HerA and FtsK and the nearly perfect complementarity of their phyletic distributions suggest that HerA similarly mediates DNA pumping into the progeny cells during archaeal cell division. It appears likely that the HerA and FtsK families diverged concomitantly with the archaeal–bacterial division and that the last universal common ancestor of modern life forms had an ancestral DNA-pumping ATPase that gave rise to these families. Furthermore, the relationship of these cellular proteins with the packaging ATPases of diverse DNA viruses suggests that a common DNA pumping mechanism might be operational in both cellular and viral genome segregation. The herA gene forms a highly conserved operon with the gene for the NurA nuclease and, in many archaea, also with the orthologs of eukaryotic double-strand break repair proteins MRE11 and Rad50. HerA is predicted to function in a complex with these proteins in DNA pumping and repair of double-stranded breaks introduced during this process and, possibly, also during DNA replication. Extensive comparative analysis of the ‘genomic context’ combined with in-depth sequence analysis led to the prediction of numerous previously unnoticed nucleases of the NurA superfamily, including a specific version that is likely to be the endonuclease component of a novel restriction-modification system. This analysis also led to the identification of previously uncharacterized nucleases, such as a novel predicted nuclease of the Sir2-type Rossmann fold, and phosphatases of the HAD superfamily that are likely to function as partners of the FtsK–HerA superfamily ATPases.  相似文献   

19.
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 mutants to ionizing radiation and MMS, but did not increase resistance in strains defective in recombination (rad51, rad52, rad54, rad59) or NHEJ only (yku70, sir4). Increased Exo1 or TLC1 RNA did not alter checkpoint responses or restore NHEJ proficiency, but DNA repair defects of yku70 and rad27 (fen) mutants were differentially suppressed by the two genes. Overexpression of Exo1, but not mutant proteins containing substitutions in the conserved nuclease domain, increased recombination and suppressed HO and EcoRI endonuclease-induced killing of rad50 strains. exo1 rad50 mutants lacking both nuclease activities exhibited a high proportion of enlarged, G2-arrested cells and displayed a synergistic decrease in DSB-induced plasmid:chromosome recombination. These results support a model in which the nuclease activity of the Rad50/Mre11/Xrs2 complex is required for recombinational repair, but not NHEJ. We suggest that the 5'-3' exo activity of Exo1 is able to substitute for Rad50/Mre11/Xrs2 in rescission of specific classes of DSB end structures. Gene-specific suppression by TLC1, which encodes the RNA subunit of the yeast telomerase complex, demonstrates that components of telomerase can also impact on DSB repair pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号