首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies utilizing NMR spectroscopy have shown that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) probably binds Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) in one of two extended coil conformations (A or B). The relative reactivities of a series of N-methylated peptides based on the structure of peptide 1 might, therefore, be related to how well each can assume the A or B conformation. From estimates of the magnitude of steric interactions that would be induced by N-methylation of an amide in peptide 1 that is locked in either conformation, the ability of each peptide to form that conformation was predicted. The ability of A-kinase to catalyze phosphorylation of the N-methylated peptides correlated well with the ability of each peptide to form conformation A, but not conformation B. In accord with these findings, the reactivity of an unreactive N-methylated peptide was partially restored by a second change, which allowed the peptide to assume conformation A. These results suggest that, when bound in the enzymatic active site, peptide 1 has a conformation that resembles structure A much more closely than structure B.  相似文献   

2.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Protein kinase C, purified to near homogeneity from the brain, has been tested toward a variety of synthetic peptide substrates including different phosphorylatable residues. While it proved totally inactive toward the tyrosyl peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly, as well as toward several more or less acidic seryl peptides, it phosphorylates with a Ca2+/phospholipid-dependent mechanism, at seryl and/or threonyl residues, many basic peptides, some of which are also good substrates for cAMP-dependent protein kinase (A-kinase). Among the peptides tested, however, the best substrate for protein kinase C, with kinetic constants comparable to those of histones, is the nonapeptide Gly-Ser-Arg6-Tyr, which is not a substrate for A-kinase. Moreover, although the peptide Pro-Arg5-Ser-Ser-Arg-Pro-Val-Arg is a good substrate for both kinases, its derivative with ornitines replacing arginines is phosphorylated only by protein kinase C. Some typical substrates of A-kinase on the other hand, like the peptides Phe-Arg2-Leu-Ser-Ile-Ser-Thr-Glu-Ser and Arg2-Ala-Ser-Val-Ala, are phosphorylated by protein kinase C rather slowly and with unfavourable kinetic constants. It is concluded that, while both protein kinase C and A-kinase need basic groups close to the phosphorylatable residues, their primary structure determinants are quite distinct.  相似文献   

4.
Phospholamban of isolated sarcoplasmic reticulum of cardiac and smooth muscle is phosphorylated by cyclic GMP-dependent protein kinase (G-kinase). Concomitantly, the affinity of the Ca2+ pump for Ca2+ is increased. These effects are very similar to those seen with cyclic AMP-dependent protein kinase (A-kinase). The phosphate incorporation into phospholamban and the stimulatory effects of both kinases on the Ca2+ pump are not additive, suggesting that G-kinase phosphorylates the same serine residue as A-kinase. A possible physiological role for phosphorylation of phospholamban by G-kinase is discussed.  相似文献   

5.
The peptide Arg-Lys-Arg-Ala-Arg-Lys-Glu was synthesized and tested as an inhibitor of cyclic GMP-dependent protein kinase. This synthetic peptide is a non-phosphorylatable analogue of a substrate peptide corresponding to a phosphorylation site (serine-32) in histone H2B. The peptide was a competitive inhibitor of cyclic GMP-dependent protein kinase with respect to synthetic peptide substrates, with a Ki value of 86 microM. However, it did not inhibit phosphorylation of intact histones by cyclic GMP-dependent protein kinase under any conditions tested. Arg-Lys-Arg-Ala-Arg-Lys-Glu competitively inhibited the phosphorylation of either peptides or histones by the catalytic subunit of cyclic AMP-dependent protein kinase, with similar Ki values (550 microM) for both of these substrates. The peptide Leu-Arg-Arg-Ala-Ala-Leu-Gly, which was previously reported to be a selective inhibitor of both peptide and histone phosphorylation by cyclic AMP-dependent protein kinase, was a poor inhibitor of cyclic GMP-dependent protein kinase acting on peptide substrates (Ki = 800 microM), but did not inhibit phosphorylation of histones by cyclic GMP-dependent protein kinase. The selectivity of these synthetic peptide inhibitors toward either cyclic GMP-dependent or cyclic AMP-dependent protein kinases is probably based on differences in the determinants of substrate specificity recognized by these two enzymes. It is concluded that histones interact differently with cyclic GMP-dependent protein kinase from the way they do with the catalytic subunit of cyclic AMP-dependent protein kinase.  相似文献   

6.
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.  相似文献   

7.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

8.
Synthetic beta-turn peptides as substrates for a tyrosine protein kinase   总被引:2,自引:0,他引:2  
An attempt has been made at defining the secondary structural requirement for phosphorylation of substrates of a protein tyrosine kinase from the leukemia virus-transformed LSTRA cell line. An examination of the sites of phosphorylation of substrates of protein tyrosine kinases indicated a relatively high probability of the beta-turn as the secondary structural feature at these sites. We have, therefore, synthesized three tyrosine peptides: Ala-Pro-Tyr-Gly-NHCH3, Leu-Pro-Tyr-Ala-NHCH3, and Pro-Gly-Ala-Tyr-NH2, of which the first two peptides, but not the third, would be expected to contain the tyrosine residue in a beta-turn. Circular dichroism and infrared spectral data on the peptides confirmed this expectation. Phosphorylation data on the peptides by the tyrosine kinase showed that the two beta-turn peptides were phosphorylated with Vmax and Km values comparable to those of the 13-residue-long arginine-containing synthetic peptide substrate having a sequence homologous to the autophosphorylation site of the LSTRA kinase. The peptides used here contain the shortest sequence length among the reported synthetic peptide substrates for protein tyrosine kinases. Their preference for the beta-turn indicated that this conformation may serve as the recognition site for tyrosine phosphorylation.  相似文献   

9.
A number of 2-substituted cyclic nucleotide derivatives were synthesized and investigated as activators of cAMP-dependent protein kinase and as substrates for and inhibitors of cAMP phosphodiesterase. Ring closure of 5-amino-1-beta-D-ribofuranosylimidazol-4-carboxamide cyclic 3',5'-phosphate (1) with various aldehydes according to a new procedure (Meyer, R. B., Jr., Shuman, D.A., and Robins, R. K. (1974), J. Am. Chem. Soc. 96, 4962) gave new derivatives of adenosine cyclic 3',5'-phosphate with the following 2-substituents: n-propyl, n-hexl, n-octyl, n-decyl, styryl, o-methoxyphenyl, and 2-thienyl. Alkylation of 2-mercaptoadenosine cyclic 3',5'-phosphate (20, Meyer et al., 1974) gave new cAMP derivatives with the following 2-substituent: ethylthio, n-propylthio, isopropylthio, allylthio, n-decylthio, and benzylthio. Deamination of 2-methyl-,2-n-butyl-, and 2-ethylthioadenosine cyclic 3',5'-phosphate. Using multiple regression analysis, a striking relationship was found between the relative potency of the compounds as activators of bovine brain cAMP-dependent protein kinase and parameters describing the hydrophobic, steric, and electronic character of the substituents on these compounds. All compounds were substrates for a cyclic nucleotide phosphodiesterase preparation from rabbit kidney. Additionally, the compounds were as a group, good inhibitors of the hydrolysis of cAMP by phosphodiesterase preparations from rabbit lung, beef heart, and dog heart.  相似文献   

10.
The heptapeptide EDNEYTA, which reproduces the main autophosphorylation site of Src, has been previously shown to be a good substrate for both Src and Syk tyrosine kinases [Ruzza, P., et al., J. Pept. Sci., 2 (1996) 325]. Four lactam bridge conformationally constrained analogues of this peptide were synthesized by classical solution methods and screened for their suitability as c-Fgr and Syk tyrosine kinase substrates. The kinetic data obtained indicate that the different rings of the lactam peptides influence the capability of the peptides to act as PTK substrates. In general cyclization decreases the peptide phosphorylability, however the sequence containing the greatest lactam ring, ED(EEYTK), resulted in an especially suitable and selective substrate for Syk tyrosine kinase.  相似文献   

11.
Summary The heptapeptide EDNEYTA, which reproduces the main autophosphorylation site of Src, has been previously shown to be a good substrate for both Scc and Syk tyrosine kinases [Ruzza, P., et al., J. Pept. Sci., 2 (1996) 325]. Four lactam bridge conformationally constrained analogues of this peptide were synthesized by classical solution methods and screened for their suitability as c-Fgr and Syk tyrosine kinase substrates. The kinetic data obtained indicate that the different rings of the lactam peptides influence the capability of the peptides to act as PTK substrates. In general cyclization decreases the peptide phosphorylability, however the sequence containing the greatest lactam ring, ED(EEYTK), resulted in an especially suitable and selective substrate for Syk tyrosine kinase.  相似文献   

12.
Based on the X-ray crystal structure of cAMP-dependent protein kinase (PKA) with the endogenous inhibitor PKI and the X-ray crystal structure of cyclin-dependent kinase 2 (CDK2) with a substrate peptide, a proposal is put forth that some protein kinases bind peptide substrates in their active sites in the poly-L-proline type II (PPII) conformation. In this work, PPII peptide mimics are evaluated as pseudosubstrate inhibitors of cGMP-dependent protein kinase (PKG) to explore if PKG also binds peptide substrates in the PPII conformation. Inhibition data of our PPII mimetics provide evidence that the P-1, P-2, and P-3 residues of substrate peptides bind in the PPII conformation (phi approximately -75 degrees, psi approximately 145 degrees). In addition, the inhibition data also suggest that the P-1, P-2, and P-3 residues in substrate peptides bind with a gauche(-) chi1 angle.  相似文献   

13.
Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

14.
Affinities of the catalytic subunit (C1) of Saccharomyces cerevisiae cAMP-dependent protein kinase and of mammalian cGMP-dependent protein kinase were determined for the protein kinase inhibitor (PKI) peptide PKI(6-22)amide and seven analogues. These analogues contained structural alterations in the N-terminal alpha-helix, the C-terminal pseudosubstrate portion, or the central connecting region of the PKI peptide. In all cases, the PKI peptides were appreciably less active as inhibitors of yeast C1 than of mammalian C alpha subunit. Ki values ranged from 5- to 290-fold higher for the yeast enzyme than for its mammalian counterpart. Consistent with these results, yeast C1 exhibited a higher Km for the peptide substrate Kemptide. All of the PKI peptides were even less active against the mammalian cGMP-dependent protein kinase than toward yeast cAMP-dependent protein kinase, and Kemptide was a poorer substrate for the former enzyme. Alignment of amino acid sequences of these homologous protein kinases around residues in the active site of mammalian C alpha subunit known to interact with determinants in the PKI peptide [Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N-h, Taylor, S. S., & Sowadski, J. M. (1991) Science 253, 414-420] provides a structural basis for the inherently lower affinities of yeast C1 and cGMP-dependent protein kinase for binding peptide inhibitors and substrates. Both yeast cAMP-dependent and mammalian cGMP-dependent protein kinases are missing two of the three acidic residues that interact with arginine-18 in the pseudosubstrate portion of PKI. Further, the cGMP-dependent protein kinase appears to completely lack the hydrophobic/aromatic pocket that recognizes the important phenylalanine-10 residue in the N-terminus of the PKI peptide, and binding of the inhibitor by the yeast protein kinase at this site appears to be partially compromised.  相似文献   

15.
We previously described the isolation of a variant subline of HL-60 cells that does not differentiate in response to nitric oxide (NO)-generating agents or to cGMP analogs [7]. The variant cells have normal guanylate cyclase activity and normal NO-induced increases in the intracellular cGMP concentration. We now show that the variant cells have normal cGMP-dependent protein kinase (G-kinase) activity, both by an in vitro and in vivo assay, and using two-dimensional gel electrophoresis we have identified six G-kinase substrates in the parental cells. Of these six proteins, we found considerably less phosphorylation of one of the proteins in the variant cells than in parental cells, both in vitro and in intact cells, and by 35S-methionine/35S-cysteine incorporation we found much less of this protein in the variant cells than in parental cells. The protein is a shared substrate of cAMP-dependent protein kinase (A-kinase); since cAMP analogs still induce differentiation of the variant cells, it appears that the NO/cGMP/G-kinase and cAMP/A-kinase signal transduction pathways share some but not all of the same target proteins in inducing differentiation of HL-60 cells.  相似文献   

16.
The protein tyrosine kinase, pp60(c-)(src), is involved in cellular signaling and is activated during mitosis and in various tumors. We have been employing cyclic decapeptides to identify the determinants for substrate binding and phosphorylation to develop inhibitors competitive with protein substrates of Src. A structure-activity study [McMurray, J. S., Budde, R. J. A., Ke, S., Obeyesekere, O. U., Wang, W., Ramdas, L., and Lewis, C. A. (1998) Arch. Biochem. Biophys. 355, 124] revealed that, at the position 3 residues C-terminal to the phosphorylated tyrosine (Y + 3), both glutamic acid and phenylalanine gave identical K(i), K(m), and V(max) values. We hypothesized that the area of Src that binds the Y + 3 residue contains either a positively charged lysine or an arginine, capable of ionic interactions with glutamic acid or cation-pi interactions with phenylalanine. To test this hypothesis, a series of phenylalanine analogues were substituted at position 7 (the Y + 3 residue) in cyclo(Asp(1)-Asn(2)-Glu(3)-Tyr(4)-Ala(5)-Phe(6)-Phe(7)-Gln(8)-D-Phe(9 )-Pro(10)). Of these, 4-carboxyphenylalanine (4-Cpa) and phosphotyrosine resulted in high affinity peptides exhibiting K(i) values of 0.85 and 1.1 microM, respectively, 180- and 130-fold increases in potency over the parent cyclic peptide (K(i) = 150 microM). These peptides were noncompetitive with respect to ATP and competitive against the phosphate-accepting substrate, polyGlu(4)Tyr. The truncated cyclic peptide, cyclo(Phe-4-Cpa-Gln-D-Phe-Pro-Asp-Aca) (Aca = epsilon-aminocaproic acid), which did not contain tyrosine, was also a competitive inhibitor with a K(i) value of 24 microM. We conclude that these cyclic peptides bind to a positively charged area that is near the phosphate transfer region of the active site of Src but does not necessarily include the tyrosine-binding pocket. Furthermore, the 4-Cpa-containing cyclic decapeptide shows remarkable selectivity in the inhibition of Src versus the src family members Yes and Lck, as well as other protein tyrosine kinases, Ser/Thr kinases, and other ATP-utilizing enzymes.  相似文献   

17.
We utilized a novel peptide library approach to identify specific inhibitors of ZAP-70, a protein Tyr kinase involved in T cell activation. By screening more than 6 billion peptides oriented by a common Tyr residue for their ability to bind to ZAP-70, we determined a consensus optimal peptide. A Phe-for-Tyr substituted version of the peptide inhibited ZAP-70 protein Tyr kinase activity by competing with protein substrates (K(I) of 2 microM). The related protein Tyr kinases, Lck and Syk, were not significantly inhibited by the peptide. When introduced into intact T cells, the peptide blocked signaling downstream of ZAP-70, including ZAP-70-dependent gene induction, without affecting upstream Tyr phosphorylation. Thus, screening Tyr-oriented peptide libraries can identify selective peptide inhibitors of protein Tyr kinases.  相似文献   

18.
Desensitization of the beta-adrenergic receptor has been correlated in some cell systems with receptor phosphorylation. Various kinases have been implicated in these phosphorylation processes, including both cAMP-dependent protein kinase and protein kinase C. In the present study, we have utilized the protein sequence information obtained from the cloning of the mammalian beta-adrenergic receptor to prepare synthetic peptides corresponding to regions of the receptor which would be predicted to act as possible substrates for these kinases in vivo. Two of these receptor-derived peptides were found to serve as substrates for these protein kinases. A peptide corresponding to amino acids 257-264 of the beta-receptor is the preferred substrate for the cAMP-dependent protein kinase, while protein kinase C showed a marked preference for phosphorylation of a peptide corresponding to residues 341-351 of the beta-adrenergic receptor.  相似文献   

19.
Peptide 1, Leu-Arg-Arg-Ala-Ser-Leu-Gly, is an excellent substrate for cAMP-dependent protein kinase. While the importance of both arginines for effective enzyme-substrate interactions has been shown, it has not been known whether the kinase will catalyze phosphorylation of substrates which contain other than peptide bonds. We report that analogs of peptide 1 which contain depsi linkages replacing selected amide bonds are good protein kinase substrates. Therefore, with the possible exception of the serine amide proton, no peptide 1 amide hydrogens are involved in peptide-peptide or peptide-enzyme hydrogen bonding crucial to defining the high substrate activity of this peptide. It is thus unlikely that peptide 1 is bound by the protein kinase while in an alpha-helical or a beta-turn structure. Three peptides were found to be very poor substrates for protein kinase, those containing N-methyl amino acids in place of Ser5 or Leu6 and a peptide containing Pro in place of Leu6. These peptides are poor substrates for the enzyme possibly because they are unable to adopt a conformation necessary for catalysis of phosphoryl group transfer to occur or due to steric effects in the enzymatic active site.  相似文献   

20.
cGMP-dependent protein kinase (G-kinase) and the regulatory subunit of type I (RI) cAMP-dependent protein kinase (A-kinase) both contain a phosphorylation site located near the NH2 terminus of each enzyme. These sites can be utilized as convenient markers for the determination of the position of an amino acid residue susceptible to either chemical or enzymatic digestion. Using the tryptophan-specific reagent, N-chlorosuccinimide, the approximate location along the polypeptide chain of six reactive tryptophans in G-kinase and three reactive residues in RI were identified. Similarly, cleavage with cyanide was used to locate free and disulfide-bonded cysteines in both proteins. The approximate positions of nine cysteines in G-kinase were determined along with the location of the interchain disulfide bond and an intrachain disulfide bond. RI was found to contain three cyanide-reactive cysteines, two of which are involved in interchain disulfide bonding. A comparison of the positions of the cysteines and tryptophans determined by chemical cleavage in G-kinase and RI, with the positions of cysteine and tryptophan in the known sequence of the type II A-kinase, support the structural relationships between these enzymes. Comparison with subsequently reported primary sequences of all three enzymes indicates the limits of precision of this chemical cleavage procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号