首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leadzyme is a ribozyme that requires Pb2+. The catalytic sequence, CUGGGAGUCC, binds to an RNA substrate, GGACC downward arrowGAGCCAG, cleaving the RNA substrate at one site. We have investigated the effect of the substrate sequence on the cleavage activity of leadzyme using mutant substrates in order to structurally understand the RNA catalysis. The results showed that leadzyme acted as a catalyst for single site cleavage of a C5 deletion mutant substrate, GGAC downward arrowGAGCCAG, as well as the wild-type substrate. However, a mutant substrate GGACCGACCAG, which had G8 deleted from the wild-type substrate, was not cleaved. Kinetic studies by surface plasmon resonance indicated that the difference between active and inactive structures reflected the slow association and dissociation rate constants of complex formation induced by Pb2+rather than differences in complex stability. CD spectra showed that the active form of the substrate-leadzyme complex was rearranged by Pb2+binding. The G8 of the wild-type substrate, which was absent in the inactive complex, is not near the cleavage site. Thus, these results show that the active substrate-leadzyme complex has a Pb2+binding site at the junction between the unpaired region (asymmetric internal loop) and the stem region, which is distal to the cleavage site. Pb2+may play a role in rearranging the bases in the asymmetric internal loop to the correct position for catalysis.  相似文献   

2.
The location of the Escherichia coli RNase P cleavage site was studied both in vitro and in vivo. We show that selection of the cleavage site is dependent on the nucleotide at the cleavage site and the length of the acceptor-stem. Within the acceptor-stem the number of nucleotides on the 5'-half of the acceptor-stem appears to be the important determinant, rather than the number of base pairs in the acceptor-stem. We also demonstrate that the length of the T-stem and a G to C substitution at position 57 in the tRNA(Tyr)Su3 precursor influence the location of the cleavage site under certain conditions. With respect to the function of the subunits of RNase P our data suggest that the nucleotide at position 333 in M1 RNA, and the C5 protein, are important for the identification of the cleavage site.  相似文献   

3.
A guanine (G638) within the substrate loop of the VS ribozyme plays a critical role in the cleavage reaction. Replacement by any other nucleotide results in severe impairment of cleavage, yet folding of the substrate is not perturbed, and the variant substrates bind the ribozyme with similar affinity, acting as competitive inhibitors. Functional group substitution shows that the imino proton on the N1 is critical, suggesting a possible role in general acid-base catalysis, and this in accord with the pH dependence of the reaction rate for the natural and modified substrates. We propose a chemical mechanism for the ribozyme that involves general acid-base catalysis by the combination of the nucleobases of guanine 638 and adenine 756. This is closely similar to the probable mechanism of the hairpin ribozyme, and the active site arrangements for the two ribozymes appear topologically equivalent. This has probably arisen by convergent evolution.  相似文献   

4.
Kinetics of intermolecular cleavage by hammerhead ribozymes.   总被引:30,自引:0,他引:30  
M J Fedor  O C Uhlenbeck 《Biochemistry》1992,31(48):12042-12054
The hammerhead catalytic RNA effects cleavage of the phosphodiester backbone of RNA through a transesterification mechanism that generates products with 2'-3'-cyclic phosphate and 5'-hydroxyl termini. A minimal kinetic mechanism for the intermolecular hammerhead cleavage reaction includes substrate binding, cleavage, and product release. Elemental rate constants for these steps were measured with six hammerhead sequences. Changes in substrate length and sequence had little effect on the rate of the cleavage step, but dramatic differences were observed in the substrate dissociation and product release steps that require helix-coil transitions. Rates of substrate binding and product dissociation correlated well with predictions based on the behavior of simple RNA duplexes, but substrate dissociation rates were significantly faster than expected. Ribozyme and substrate alterations that eliminated catalytic activity increased the stability of the hammerhead complex. These results suggest that substrate destabilization may play a role in hammerhead catalysis.  相似文献   

5.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

6.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

7.
The role of 2'-hydroxyl groups in a model substrate for RNase P from Escherichia coli was studied using mixed DNA/RNA derivatives of such a substrate. The presence of the 2'-hydroxyl groups of nucleotides at positions -1 and -2 in the leader sequence and at position 1, as well as at the first C in the 3'-terminal CCA sequence, are important but not absolutely essential for efficient cleavage of the substrate by RNase P or its catalytic RNA subunit, M1 RNA. The 2'-hydroxyl groups in the substrate that are important for efficient cleavage also participate in the binding of Mg2+. An all-DNA external guide sequence (EGS) can efficiently render a potential substrate, derived from the model substrate, susceptible to cleavage by the enzyme or its catalytic RNA subunit. Furthermore, both DNA and RNA EGSs turn over during the reaction with RNase P in vitro. The identity of the nucleotide at position 1 in the substrate, the adjacent Mg(2+)-binding site in the leader sequence, and the junction of the single and double-stranded regions are the important elements in the recognition of model substrates, as well as in the identification of the sites of cleavage in those model substrates.  相似文献   

8.
A study of the activity of deoxyribonucleotide-substituted analogs of the hammerhead domain of RNA catalysis has led to the design of a 14mer oligomer composed entirely of deoxyribonucleotides that promotes the cleavage of an RNA substrate. Characterization of this reaction with sequence variants and mixed DNA/RNA oligomers shows that, although the all-deoxyribonucleotide oligomer is less efficient in catalysis, the DNA/substrate complex shares many of the properties of the all-RNA hammerhead domain such as multiple turnover kinetics and dependence on Mg2+ concentration. On the other hand, the values of kinetic parameters distinguish the DNA oligomer from the all-RNA oligomer. In addition, an analog of the oligomer having a single ribonucleotide in a strongly conserved position of the hammerhead domain is associated with more efficient catalysis than the all-RNA oligomer.  相似文献   

9.
Heckman JE  Lambert D  Burke JM 《Biochemistry》2005,44(11):4148-4156
The hammerhead ribozyme has been intensively studied for approximately 15 years, but its cleavage mechanism is not yet understood. Crystal structures reveal a Y-shaped molecule in which the cleavage site is not ideally aligned for an S(N)2 reaction and no RNA functional groups are positioned appropriately to perform the roles of acid and base or other functions in the catalysis. If the ribozyme folds to a more compact structure in the transition state, it probably does so only transiently. We have used photocrosslinking as a tool to trap hammerhead ribozyme-substrate complexes in various stages of folding. Results suggest that the two substrate residues flanking the cleavage site approach and stack upon two guanosines (G8 and G12) in domain 2, moving 10-15 A closer to domain 2 than they appear in the crystal structure. Most crosslinks obtained with the nucleotide analogues positioned in the ribozyme core are catalytically inactive; however, one cobalt(III) hexaammine-dependent crosslink of an unmodified ribozyme retains catalytic activity and confirms the close stacking of cleavage site residue C17 with nucleotide G8 in domain 2. These findings suggest that residues involved in the chemistry of hammerhead catalysis are likely located in that region containing G8 and G12.  相似文献   

10.
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.  相似文献   

11.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

12.
The VS ribozyme is a 154 nucleotide sequence found in certain natural strains of Neurospora. The RNA can be divided into a substrate and a catalytic domain. Here we present the solution structure of the substrate RNA that is cleaved in a trans reaction by the catalytic domain in the presence of Mg2+. The 30 nucleotide substrate RNA forms a compact helix capped by a flexible loop. The cleavage site bulge contains three non-canonical base-pairs, including an A+.C pair with a protonated adenine. This adenine (A622) is a pH controlled conformational switch that opens up the internal loop at higher pH. The possible significance of this switch for substrate recognition and cleavage is discussed.  相似文献   

13.
Hammerhead ribozymes targeted against two unrelated RNA substrates have been prepared. For each substrate, four ribozymes, differing in their hybridising arm length and composition (DNA or RNA), have been synthesised and kinetically characterised. The presence of DNA in the hybridising arms had little effect on the overall cleavage rate when the cleavage step was rate determining. Shortening each of the hybridising arms of ribozymes from 10 to 6 nucleotides generally resulted in modest changes in rate constants for cleavage of the same 13mer substrate. In one case the presence of long RNA hybridising arms significantly impeded the cleavage reaction. Cleavage rates displayed first order dependence on hydroxide ion concentration at low pHs. At higher pH, some ribozymes deviated from this first order dependence because of a change in the rate-determining step, possibly due to a requirement for a conformation change in the ribozyme-substrate complex prior to cleavage. Ribozyme cleavage was strongly dependent on temperature in the range 5-45 degrees C, with an activation energy for the reaction of approximately 60 kJ mol-1. The ribozymes displayed biphasic dependence on magnesium ion concentration; evidence of strong apparent binding (Kd approximately 10 mM) as well as a looser interaction was observed for all ribozymes.  相似文献   

14.
A novel chemo-genetic approach for the analysis of general acid-base catalysis by nucleobases in ribozymes is reviewed. This involves substitution of a C-nucleoside with imidazole in place of a natural nucleobase. The Varkud satellite ribozyme in which the nucleobase at the critical 756 position has been replaced by imidazole is active in both cleavage and ligation reactions. Similarly, a modified hairpin ribozyme with the nucleobase at position 8 substituted by imidazole is active in cleavage and ligation reactions. Although the rates are lower than those of the natural ribozymes, they are significantly greater than other variants at these positions. The dependence of the hairpin ribozyme reaction rates on pH has been studied. Both cleavage and ligation reactions display a bell-shaped pH dependence, consistent with general acid-base catalysis involving the nucleotide at position 8.  相似文献   

15.
M Tezuka  S Chládek 《Biochemistry》1990,29(3):667-670
Seven 2'(3')-O-(aminoacyl) trinucleotides with structures derived from the 3'-terminal C-C-A sequence of aa-tRNA via nucleotide substitutions were investigated as acceptor substrates in the peptidyltransferase reaction and as inhibitors of substrate binding to the peptidyltransferase A site. It was found that all tested compounds were active in both systems, although substitution in the first and second nucleotide position results in some decrease of acceptor activity. Remarkably, replacement of natural cytidylic acid residues in C-C-A-Phe with guanylic acid moieties resulted only in a small decrease of acceptor or binding activity. The results indicate that the acceptor sequence of aa-tRNA is not probably engaged in base pairing with a sequence of 23S RNA during its interaction with the peptidyltransferase A site.  相似文献   

16.
D B Olsen  G Kotzorek  F Eckstein 《Biochemistry》1990,29(41):9546-9551
The inhibitory effect of phosphorothioate residues, located within one strand of double-stranded DNA, on the hydrolytic activity of the restriction endonuclease EcoRV was investigated. Specific incorporation of a phosphorothioate group at the site of cleavage yielded the sequence 5'-GATsATC-3'. This modified sequence was cleaved at a relative rate of 0.1 compared to the unmodified substrate. Substrates 5'-GATsAsTC-3' and 5'-GsATsATC-3', both containing one additional phosphorothioate substitution, were linearized at a rate of 0.04 relative to unmodified DNA. However, under the same conditions, fully dAMPS-substituted DNA was found to be virtually resistant to the hydrolytic activity of EcoRV. Further experiments showed that double-stranded DNA fragments generated by PCR containing phosphorothioate groups within both strands are potent inhibitors of EcoRV catalysis. The inhibition was independent of whether the inhibitor fragment contained an EcoRV recognition site. We concluded that substitution of the phosphate group at the site of cleavage by a phosphorothioate residue decreases the rate of EcoRV-catalyzed hydrolysis most significantly. Substitution of other phosphate groups within the recognition sequence plays a limited role in enzyme inhibition. The presence of multiple dNMPS residues at regions of the DNA removed from the EcoRV recognition site may decrease the amount of enzyme available for catalysis by nonspecific binding to EcoRV.  相似文献   

17.
Lambert D  Heckman JE  Burke JM 《Biochemistry》2006,45(23):7140-7147
Native hammerhead ribozymes contain RNA domains that enable high catalytic activity under physiological conditions, where minimal hammerheads show little activity. However, little is known about potential differences in native versus minimal ribozyme folding. Here, we present results of photocross-linking analysis of native and minimal hammerheads containing photoreactive nucleobases 6-thioguanosine, 2,6-diaminopurine, 4-thiouridine, and pyrrolocytidine, introduced at specific sites within the catalytic core. Under conditions where catalytic activity is observed, the two substrate nucleobases spanning the cleavage site approach and stack upon G8 and G12 of the native hammerhead, two conserved nucleobases that show similar behavior in minimal constructs, have been implicated in general acid-base catalysis, and are >15 A from the cleavage site in the crystal structures. Pyrrolocytidine at cleavage site position 17 forms an efficient crosslink to G12, and the crosslinked RNA retains catalytic activity. Multiple cross-linked species point to a structural rearrangement within the U-turn, positioning residue G5 in the vicinity of cleavage site position 1.1. Intriguing crosslinks were triggered by nucleotide analogues at positions distal to the crosslinked residues; for example, 6-thioguanosine at position 5 induced a crosslink between G12 and C17, suggesting an intimate functional communication among these three nucleobases. Together, these results support a model in which the native hammerhead folds to an active structure similar to that of the minimal ribozyme, and significantly different from the crystallographic structures.  相似文献   

18.
19.
Application of ribozymes for knockdown of RNA targets requires the identification of suitable target sites according to the consensus sequence. For the hairpin ribozyme, this was originally defined as Y?2 N?1 *G+1 U+2 Y+3 B+?, with Y = U or C, and B = U, C or G, and C being the preferred nucleobase at positions -2 and +4. In the context of development of ribozymes for destruction of an oncogenic mRNA, we have designed ribozyme variants that efficiently process RNA substrates at U?2 G?1 *G+1 U+2 A+3 A+? sites. Substrates with G?1 *G+1 U+2 A+3 sites were previously shown to be processed by the wild-type hairpin ribozyme. However, our study demonstrates that, in the specific sequence context of the substrate studied herein, compensatory base changes in the ribozyme improve activity for cleavage (eight-fold) and ligation (100-fold). In particular, we show that A+3 and A+? are well tolerated if compensatory mutations are made at positions 6 and 7 of the ribozyme strand. Adenine at position +4 is neutralized by G? →U, owing to restoration of a Watson-Crick base pair in helix 1. In this ribozyme-substrate complex, adenine at position +3 is also tolerated, with a slightly decreased cleavage rate. Additional substitution of A? with uracil doubled the cleavage rate and restored ligation, which was lost in variants with A?, C? and G?. The ability to cleave, in conjunction with the inability to ligate RNA, makes these ribozyme variants particularly suitable candidates for RNA destruction.  相似文献   

20.
Kaye NM  Christian EL  Harris ME 《Biochemistry》2002,41(14):4533-4545
The tRNA processing endonuclease ribonuclease P contains an essential and highly conserved RNA molecule (RNase P RNA) that is the catalytic subunit of the enzyme. To identify and characterize functional groups involved in RNase P RNA catalysis, we applied self-cleaving ribozyme-substrate conjugates, on the basis of the RNase P RNA from Escherichia coli, in nucleotide analogue interference mapping (NAIM) and site-specific modification experiments. At high monovalent ion concentrations (3 M) that facilitate protein-independent substrate binding, we find that the ribozyme is largely insensitive to analogue substitution and that concentrations of Mg2+ (1.25 mM) well below that necessary for optimal catalytic rate (>100 mM) are required to produce interference effects because of modification of nucleotide bases. An examination of the pH dependence of the reaction rate at 1.25 mM Mg2+ indicates that the increased sensitivity to analogue interference is not due to a change in the rate-limiting step. The nucleotide positions detected by NAIM under these conditions are located exclusively in the catalytic domain, consistent with the proposed global structure of the ribozyme, and predominantly occur within the highly conserved P1-P4 multihelix junction. Several sensitive positions in J3/4 and J2/4 are proximal to a previously identified site of divalent metal ion binding in the P1-P4 element. Kinetic analysis of ribozymes with site-specific N7-deazaadenosine and deazaguanosine modifications in J3/4 was, in general, consistent with the interference results and also permitted the analysis of sites not accessible by NAIM. These results show that, in this region only, modification of the N7 positions of A62, A65, and A66 resulted in measurable effects on reaction rate and modification at each position displayed distinct sensitivities to Mg2+ concentration. These results reveal a restricted subset of individual functional groups within the catalytic domain that are particularly important for substrate cleavage and demonstrate a close association between catalytic function and metal ion-dependent structure in the highly conserved P1-P4 multihelix junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号