首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Trehalose is a natural non-reducing sugar that is found in the vast majority of organisms such as bacteria, yeasts, invertebrates and even in plants. Regarding its features, it is considered as a unique compound. It plays a key role as a carbon source in lower organisms and as an osmoprotectant or a stabilizing molecule in higher animals and plants. Although in plants it is present in a minor quantity, its levels rise upon exposure to abiotic stresses. Trehalose is believed to play a protective role against different abiotic stressful cues such as temperature extremes, salinity, desiccation. Moreover, it regulates water use efficiency and stomatal movement in most plants. Detectable endogenous trehalose levels are vital for sustaining growth under stressful cues. Exogenously applied trehalose in low amounts mitigates physiological and biochemical disorders induced by various abiotic stresses, delays leaf abscission and stimulates flowering in crops. External application of trehalose also up-regulates the stress responsive genes in plants exposed to environmental cues. The genetically modified plants with trehalose biosynthesis genes exhibit improved tolerance against stressful conditions. An increased level of trehalose has been observed in transgenic plants over-expressing genes of microbial trehalose biosynthesis. However, these transgenic plants display enhanced tolerance to heat, cold, salinity, and drought tolerance. Due to multiple bio-functions of this sugar, it has gained considerable ground in various fields. However, exogenous use of this bio-safe sugar would only be possible under field conditions upon adopting strategies of low-cost production of trehalose. In short, trehalose is a unique chemical that preserves vitality of plant life under harsh ecological conditions. Certainly, the new findings of this disaccharide will revolutionize a wide array of new avenues.

  相似文献   

2.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

3.
Trehalose 6-phosphate   总被引:1,自引:0,他引:1  
Trehalose 6-phosphate (T6P) is a sugar signal of emerging significance. It is an essential component of the mechanisms that coordinate metabolism with plant growth adaptation and development. Its significance began to dawn when genetic modification of the trehalose pathway produced dramatic phenotypes, before the genetic proliferation of the trehalose pathway in plants was fully realised. T6P regulates sugar utilization and starch metabolism and interacts with other signalling pathways, including those mediated by plant hormones. Trehalose phosphate synthases (TPSs) and trehalose phosphate phosphatases are regulated at the gene level by sugars, nitrate, cytokinin and abscisic acid. TPSs are also regulated post-translationally. Mechanistic details of how T6P signals are emerging, but still sparse. Nevertheless, even at this stage, targeting central regulators such as T6P offers promise in crop improvement.  相似文献   

4.
海藻糖合酶的研究进展   总被引:1,自引:0,他引:1  
海藻糖是一种天然存在的非还原性二糖, 对生物膜和蛋白质等大分子有独特的保护作用, 在食品、医药、化妆品等多个领域中都有广泛的发展空间。海藻糖合酶(TreS)是一类分子内转糖苷酶, 专一性地以麦芽糖为底物, 一步转化生成海藻糖, 操作工艺简单、底物价格低廉、应用前景良好。本文综述了海藻糖合酶的酶学性质、催化机理、基因工程以及目前存在的主要问题和拟解决方案。  相似文献   

5.
Trehalose dimycolates and monomycolates isolated from a variety of Mycobacteria species as well as synthetic trehalose mycolates and trehalose behenylbehenate produced granulomatous responses in the lungs of mice. Trehalose alone or mycolic acids or their methyl esters, however, did not. These data suggest that the sugar moiety of these defined fatty acid esters is required for the production of this cellular inflammatory reaction. When mice were challenged with virulent Mycobactorium tuberculosis they showed increased resistance against infection during the time when the granulomatous response was greatest.  相似文献   

6.
Trehalose is a non‐reducing disaccharide that is present in diverse organisms ranging from bacteria and fungi to invertebrates, in which it serves as an energy source, osmolyte or protein/membrane protectant. The occurrence of trehalose and trehalose biosynthesis pathway in plants has been discovered recently. Multiple studies have revealed regulatory roles of trehalose‐6‐phosphate, a precursor of trehalose, in sugar metabolism, growth and development in plants. Trehalose levels are generally quite low in plants but may alter in response to environmental stresses. Transgenic plants overexpressing microbial trehalose biosynthesis genes have been shown to contain increased levels of trehalose and display drought, salt and cold tolerance. In‐silico expression profiling of all Arabidopsis trehalose‐6‐phosphate synthases (TPSs) and trehalose‐6‐phosphate phosphatases (TPPs) revealed that certain classes of TPS and TPP genes are differentially regulated in response to a variety of abiotic stresses. These studies point to the importance of trehalose biosynthesis in stress responses.  相似文献   

7.
Trehalose is a non-reducing disaccharide that is present in diverse organisms ranging from bacteria and fungi to invertebrates, in which it serves as an energy source, osmolyte or protein/membrane protectant. The occurrence of trehalose and trehalose biosynthesis pathway in plants has been discovered recently. Multiple studies have revealed regulatory roles of trehalose-6-phosphate, a precursor of trehalose, in sugar metabolism, growth and development in plants. Trehalose levels are generally quite low in plants but may alter in response to environmental stresses. Transgenic plants overexpressing microbial trehalose biosynthesis genes have been shown to contain increased levels of trehalose and display drought, salt and cold tolerance. In.silico expression profiling of all Arabidopsis trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs) revealed that certain classes of TPS and TPP genes are differentially regulated in response to a variety of abiotic stresses. These studies point to the importance of trehalose biosynthesis in stress responses.  相似文献   

8.
Trehalose is a non-reducing disaccharide that is present in diverse organisms ranging from bacteria and fungi to invertebrates, in which it serves as an energy source, osmolyte or protein/membrane protectant. The occurrence of trehalose and trehalose biosynthesis pathway in plants has been discovered recently. Multiple studies have revealed regulatory roles of trehalose-6-phosphate, a precursor of trehalose, in sugar metabolism, growth and development in plants. Trehalose levels are generally quite low in plants but may alter in response to environmental stresses. Transgenic plants overexpressing microbial trehalose biosynthesis genes have been shown to contain increased levels of trehalose and display drought, salt and cold tolerance. In.silico expression profiling of all Arabidopsis trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs) revealed that certain classes of TPS and TPP genes are differentially regulated in response to a variety of abiotic stresses. These studies point to the importance of trehalose biosynthesis in stress responses.  相似文献   

9.
Trehalose metabolism: a regulatory role for trehalose-6-phosphate?   总被引:14,自引:0,他引:14  
Trehalose is a disaccharide that was initially thought to be rare in plants but now appears to be ubiquitous. A recent study has established that the initial step in trehalose synthesis is essential in Arabidopsis. Evidence is emerging that the precursor of trehalose (trehalose-6-phosphate) is an important regulatory molecule. In yeast, trehalose-6-phosphate regulates sugar influx into glycolysis. In plants, trehalose-6-phosphate also appears to regulate sugar metabolism, but the underlying mechanism is unresolved and may be substantially different from that in yeast.  相似文献   

10.
α,α-Trehalose, a sugar previously regarded as a product characteristic of certain lower plants, has been identified as a major blood sugar of insects. Trehalose has been isolated in pure form from the blood of pupae of the silk moth, Telea polyphemus, and has been recognized chromatographically in all the insects examined, which comprise 10 species belonging to 5 different orders. Trehalose has been determined quantitatively with anthrone after either chromatographic separation or chemical degradation of other sugars. In larvae and pupae of 4 species of Lepidoptera it ranges from 0.2 to 1.5 gm. per 100 ml. of blood and makes up over 90 per cent of the blood sugar; in larvae of a sawfly, about 80 per cent of the blood sugar is trehalose. In Bombyx mori and Platysamia cecropia, the pupal blood trehalose level is about half that in the mature larva, suggesting utilization of trehalose for glycogen synthesis during pupation. Small amounts of glucose and apparent glycogen are also present in the plasma of these insects. In Bombyx larval plasma there is also 0.04 to 0.12 gm. per 100 ml. of glucose-6-phosphate and smaller amounts of an apparent ketose phosphate.  相似文献   

11.
海藻糖——昆虫的血糖   总被引:5,自引:0,他引:5  
海藻糖(trehalose)是由2个葡萄糖分子通过α,α-1,1糖苷键连接的一种非还原性双糖。海藻糖作为昆虫的血糖,对于生物的能量代谢和抗逆等方面具有重要的作用。文章从昆虫海藻糖的发现、海藻糖的化学性质、昆虫中海藻糖的生理作用、代谢途径等方面进行综述,并对昆虫中海藻糖的进一步研究作了展望。  相似文献   

12.
Trehalose, the insect blood sugar, was found to inhibit diacylglycerol uptake by lipophorin from the fat body in vitro. Trehalose inhibited diacylglycerol uptake by about 40%-50% at various physiological concentrations. This suggests that trehalose may play a dual role in the hemolymph, i.e. serving as the insect's fuel and as a regulator in lipid transport.  相似文献   

13.
Flies without Trehalose   总被引:2,自引:0,他引:2  
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.  相似文献   

14.
The disaccharide trehalose is accumulated as a storage product by spores of Streptomyces griseus. Growth on media containing excess glucose yielded spores containing up to 25% of their dry weight as trehalose. Spores containing as little as 1% of their dry weight as trehalose were obtained during growth on media containing a limiting amount of glucose. Spores containing low levels of trehalose accumulated this sugar when incubated with glucose. The increase in trehalose content coincided with increases in spore refractility, heat resistance, desiccation resistance, and the time required for spore germination in complex media. Trehalose is accumulated by a wide variety of actinomycetes and related bacteria and may be partially responsible for their resistance properties.  相似文献   

15.
Trehalose, the major blood sugar of Phormia regina, is present within its tissues in an amount exceeding that in the total blood volume. A major part of the reserve is found in the abdominal fat body. An investigation of trehalose regulation, pursued with the use of a trehalose tolerance test, indicates that within a period of 4 h the adult fly can remove from its blood amounts of this sugar in excess of twice its normal level. The surplus is dealt with in an as yet unknown way, being either sequestered in the tissues (not as trehalose or glucose), metabolized, or excreted in a form other than trehalose or glucose. The process is regulated by the head, and a link between the body and the head must be maintained throughout the entire period of activity.  相似文献   

16.
Trehalose, a storage sugar of baker's yeast, is known not to be metabolized when added to a cell suspension in water or a growth medium and to support growth only after a lag of about 10 h. However, it was transported into cells by at least two transport systems, the uptake being active, with a pH optimum at 5.5. There was no stoicheiometry with the shift of protons into cells observed at high trehalose concentrations. Trehalose remained intact in cells and was not appreciably lost to a trehalose-free medium. The uptake systems were present directly after growth on glucose, then decayed with a half-life of about 25 min but could be reactivated by aerobic incubation with trehalose, maltose, alpha-methyl-D-glucoside, glucose or ethanol. The uptake systems thus induced were different as revealed by competition experiments. At least one of the systems for trehalose uptake showed cooperative kinetics. Comparative anaysis with other disaccharides indicated the existence in Saccharomyces cerevisiae, after induction with trehalose, of at least four systems for the uptake of alpha-methyl-D-glucoside, four systems for maltose, together with the two for trehalose, variously shared by the sugars, the total of alpha-glucoside-transporting systems being five.  相似文献   

17.
Trehalose is a rare sugar with unique abilities to protect biomolecules from environmental stresses and is present in many bacteria, fungi and some desiccation-tolerant higher plants. Increasing trehalose accumulation in crop plants could improve drought and salinity tolerance. Transgenic plants have been developed with trehalose biosynthetic genes--a recent study on the stress-inducible overexpression of the bifunctional TPSP fusion gene in transgenic rice could offer novel strategies for improving abiotic stress tolerance in crop plants.  相似文献   

18.
Trehalose has extensively been used to improve the desiccation tolerance of mammalian cells. To test whether trehalose improves desiccation tolerance of mammalian mitochondria, we introduced trehalose into the matrix of isolated rat liver mitochondria by reversibly permeabilizing the inner membrane using the mitochondrial permeability transition pore (MPTP). Measurement of the trehalose concentration inside mitochondria using high performance liquid chromatography showed that the sugar permeated rapidly into the matrix upon opening the MPTP. The concentration of intra-matrix trehalose reached 0.29 mmol/mg protein (approximately 190 mM) in 5 min. Mitochondria, with and without trehalose loaded into the matrix, were desiccated in a buffer containing 0.25 M trehalose by diffusive drying. After re-hydration, the inner membrane integrity was assessed by measurement of mitochondrial membrane potential with the fluorescent probe JC-1. The results showed that following drying to similar water contents, the mitochondria loaded with trehalose had significantly higher inner membrane integrity than those without trehalose loading. These findings suggest the presence of trehalose in the mitochondrial matrix affords improved desiccation tolerance to the isolated mitochondria.  相似文献   

19.
Trehalose has extensively been used to improve the desiccation tolerance of mammalian cells. To test whether trehalose improves desiccation tolerance of mammalian mitochondria, we introduced trehalose into the matrix of isolated rat liver mitochondria by reversibly permeabilizing the inner membrane using the mitochondrial permeability transition pore (MPTP). Measurement of the trehalose concentration inside mitochondria using high performance liquid chromatography showed that the sugar permeated rapidly into the matrix upon opening the MPTP. The concentration of intra-matrix trehalose reached 0.29 mmol/mg protein (∼190 mM) in 5 min. Mitochondria, with and without trehalose loaded into the matrix, were desiccated in a buffer containing 0.25 M trehalose by diffusive drying. After re-hydration, the inner membrane integrity was assessed by measurement of mitochondrial membrane potential with the fluorescent probe JC-1. The results showed that following drying to similar water contents, the mitochondria loaded with trehalose had significantly higher inner membrane integrity than those without trehalose loading. These findings suggest the presence of trehalose in the mitochondrial matrix affords improved desiccation tolerance to the isolated mitochondria.  相似文献   

20.
Trehalose metabolism in yeast has been related to stress and could be used as a stress indicator. Winemaking conditions are stressful for yeast and understanding trehalose metabolism under these conditions could be useful for controlling alcoholic fermentation. In this study, we analysed trehalose metabolism of a commercial wine yeast strain during alcoholic fermentation by varying the nitrogen levels from low (below adequate) to high (excess). We determined trehalose, nitrogen, sugar consumption and expression of NTH1, NTH2 and TPS1. Our results show that trehalose metabolism is slightly affected by nitrogen availability and that the main consumption of nitrogen occurs in the first 24 h. After this period, nitrogen is hardly taken up by the yeast cells. Although nitrogen and sugar are still available, no further growth is observed in high concentrations of nitrogen. Increased expression of genes involved in trehalose metabolism occurs mainly at the end of the growth period. This could be related to an adaptive mechanism for fine tuning of glycolysis during alcoholic tumultuous fermentation, as both anabolic and catabolic pathways are affected by such expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号