首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the day after ovulation, the thecal tissue and associated mural granulosa lutein cells of the rabbit corpus luteum were separated from the granulosa lutein 'core' by dissection and these tissues were cultured separately or together (whole corpus luteum) in defined medium for 10 days on stainless-steel grids. The medium was changed completely every 24 h. Replicate tissues were cultured with testosterone (10 ng/ml), but no other hormones were added to the medium. Progesterone production increased during the first 2 days of culture for whole corpus luteum, granulosa lutein cells and the thecal compartment which also included granulosa lutein cells. After 3 days, the production of progesterone declined gradually, but was still detectable on Day 10. The production of the metabolite, 20 alpha-dihydroprogesterone, by whole corpus luteum was equal to or greater than that of progesterone. Without the addition of testosterone, the granulosa lutein cells produced little (10 pg/culture) oestradiol during 1 day of culture, but the thecal compartment and whole corpus luteum each produced about 100 pg/culture on Day 1 and declining quantities over the next 2 days. In the presence of testosterone added to the medium, the formation of oestradiol was greatly increased for all tissues for 5-6 days of culture, after which time oestradiol was no longer detectable with or without testosterone in medium. Transmission electron microscopy of cells after 10-12 days of culture revealed fine structure that is characteristic of luteal cells, including abundant smooth endoplasmic reticulum, lipid droplets, and junctions between the luteal cells. The corpus luteum in culture resembles the corpus luteum in situ in that steroidogenesis and differentiation can proceed for a period after ovulation without extrinsic hormonal stimulation.  相似文献   

2.
Testosterone, oestradiol and progesterone were measured in peripheral plasma during the oestrous cycle of 6 heifers. Oestradiol and progesterone results confirmed earlier reports. Concentration of testosterone on the day of oestrus was 40+/-3 pg/ml (mean+/-S.E.M.), and two peaks were detected during the cycle, one 7 days before oestrus (1809+/-603 pg/ml) and the other (78+/- 7 pg/ml) on the day before the onset of oestrus. The concentration of progesterone declined in most cases 1 day after the maximum concentration of testosterone. Betamethasone treatment in 5 heifers extended luteal function by an average of 10 days: plasma androstenedione and oestradiol concentrations were unaltered; cortisol values were depressed for at least 16 days after treatment; testosterone concentrations were lowered by 13+/-2-4% during treatment, and except in one heifer the peak on Day -7 was abolished.  相似文献   

3.
Three mature nulliparous female leopards were studied for 5 years. During three separate 6-month periods serum oestradiol and progesterone concentrations were measured at weekly intervals. Oestradiol was elevated over 21 pg/ml for 54 weeks during these 3 periods, and 36 oestradiol peaks (65.8 +/- 6.3 pg/ml (mean +/- s.e.m.), range 21-172 pg/ml) were identified. Daily frequency of feline reproductive behaviours averaged over each week increased from 1.9 +/- 0.2 (n = 93) during weeks with low serum oestradiol concentrations (less than 21 pg/ml) to 5.3 +/- 0.6 (n = 54) during weeks when serum oestradiol concentrations (greater than 21 pg/ml) were high. Increased serum progesterone concentrations (13-98 n/gml) were observed on 5 occasions in 2 leopards housed together. These presumptive luteal phases lasted from 1 to 5 weeks. Baseline progesterone values were 1.6 +/- 0.4 ng/ml (n = 131). No progesterone increments were observed in isolated animals, and serum concentrations remained at baseline levels. These limited observations suggest that female leopards do not require intromission to induce ovulation and luteal function. The average interval between oestradiol peaks for cycles with no progesterone increment was 3.4 weeks (range 1-6 weeks). The interval for the 3 complete cycles associated with elevated progesterone concentrations was 7.3 weeks. Analysis of sexual behaviours over the 5-year study period revealed no evidence of seasonality in these captive leopards.  相似文献   

4.
The effect of fasting during oestrous cycle on the occurrence of oestrous and concentration of leptin and steroid hormones was investigated in goats. Sixteen Ardi goats of 10-12 month of age were split into two groups (control and fasting). Oestrous was synchronized with intravaginal progesterone sponges and detected 24h after sponge removal. Blood samples were collected at the days 5, 10, 15 of each cycle. Fasting of mature goats twice for 4 days starting on day 10 of two successive oestrous cycles inhibited oestrous behaviour and resulted in reduced concentration of leptin, progesterone and testosterone with different timing. Day 5 of the second cycle showed significant decrease in the plasma level of leptin (1.6+/-0.15 ng/ml) and progesterone (1.6+/-0.1 ng/ml) as compared to control group (3.2+/-0.15 ng/ml and 4.1+/-0.2 ng/ml, respectively). Testosterone started to decrease from day 10 of the second cycle (35.0+/-12.0 pg/ml) as compared to control group (65.0+/-15.0 pg/ml); the decrease in this hormone was significant in day 15 of the second cycle (65.0+/-16.0 pg/ml) as compared to the control (320.0+/-50.0 pg/ml). These data suggest that fasting-induced inadequate corpus luteum function, hence, lowering progesterone plasma level may partly be more leptin-dependent than the following decrease in plasma level of testosterone.  相似文献   

5.
The present study was designed to characterize and compare the physiology and ultrasonographic morphology of the corpus luteum (CL) during regression and resurgence following a single dose of native prostaglandin F2alpha (PGF) given 3 days after ovulation, with a more conventional treatment given 10 days after ovulation. On the day of pre-treatment ovulation (Day 0), horse mares were randomly assigned to receive PGF (Lutalyse; 10 mg/mare, i.m.) on Day 3 (17 mares) or Day 10 (17 mares). Beginning on either Days 3 or 10, follicle and CL data and blood samples were collected daily until post-treatment ovulation. Functional and structural regression of the CL in response to PGF treatment were similar in both the Day 3 and 10 groups, as indicated by an abrupt decrease in circulating concentrations of progesterone, decrease in luteal gland diameter and increase in luteal tissue echogenicity. As a result, the mean +/- S.E.M. interovulatory interval was shorter (P < 0.0001) in the Day 3 group (13.2 +/- 0.9 days) than in the Day 10 group (19.2 +/- 0.7 days). Within the Day 3 group, functional resurgence of the CL was detected in 75% of the mares (12 of 16) beginning 3 days after PGF treatment, as indicated by transient major (6 mares) and minor (6 mares) increases (P < 0.05 and < 0.1, respectively) in progesterone. Correspondingly, mean length of the interovulatory interval was longer (P < 0.03) in mares with major resurgence (15.8 +/- 1.6 days) than in mares with minor (11.2 +/- 1.2 days) and no resurgences (13.5 +/- 0.3 days) in progesterone. Structural resurgence of the CL in the Day 3 group and functional and structural resurgence in the Day 10 group were not detected. In conclusion, PGF treatment 3 days after ovulation resulted in structural and functional regression of the CL and hastened the interval to the next ovulation, despite post-treatment resurgences in progesterone.  相似文献   

6.
We obtained uterine and peripheral venous plasma, and samples of luteal and placental tissues from 2- to 7-year-old, Eurasian mountain reindeer (Rangifer tarandus tarandus) from a free-living, semi-domesticated herd in northern Norway in November 1995, and February and March 1996. In November, ovarian venous blood was also collected from four animals. Plasma samples were assayed for progesterone and oestradiol. The tissue samples were examined by light and electron microscopy, steroid dehydrogenase histochemistry, and northern blot analysis for RNAs for 3beta-hydroxy-steroid dehydrogenase (3beta-HSD) and P450 (side chain cleavage (scc)). Peripheral blood was taken from non-pregnant females in the same herd on the same dates. Peripheral progesterone concentrations in pregnant reindeer (3.4 +/- 0.5 ng/ml, n = 8) clearly exceeded those in non-pregnant animals (0.40 +/- 0.14 ng/ml; P < 0.0004 , n = 10) but oestradiol levels were only marginally higher in pregnant (6.0 +/- 0.7 pg/ml) than in non-pregnant (4.8 +/- 0.5 pg/ml; P = 0.35) reindeer at the stages examined. In pregnant animals, peripheral progesterone and oestradiol concentrations rose slightly between November and March but the differences did not reach significance (progesterone, P = 0.083; oestradiol, P = 0.061). In November, progesterone concentrations in the ovarian vein (79 +/- 15 ng/ml) greatly exceeded (P < 0.03) those in the uterine vein ( 10 +/- 4 ng/ml) which in turn exceeded the levels in the peripheral blood (2.8 +/- 0.4 ng/ml; P < 0.29). Oestradiol concentrations were slightly but significantly (P < 0.05) higher in the ovarian (20 +/- 3 pg/ml) than the uterine vein (13 +/- 1 pg/ml) and, in turn, greater (P < 0.03) than in peripheral blood (4.6 +/- 0.4 pg/ml). All samples of luteal tissue consisted exclusively of normal fully-differentiated cells and stained intensely for 3beta-HSD. Isolated groups of placental cells also stained strongly for 3beta-HSD. RNA for P450 (scc) and 3beta-HSD was abundant in all corpora lutea and lower concentrations of P450 (scc) were present in the placenta. 3beta-HSD RNA in the placenta was below the limit of detection. We conclude that the corpus luteum remains an important source of progesterone throughout pregnancy in reindeer but that the placenta is also steroidogenic.  相似文献   

7.
An experiment was conducted to (i) determine whether administration of recombinant bovine interferon-alpha I1 (rBoIFN-alpha) attenuates oxytocin-induced release of prostaglandin F-2 alpha and (ii) confirm previous observations that rBoIFN-alpha causes acute changes in body temperature and circulating concentrations of progesterone. Cows were treated twice a day from Day 14 to Day 17 after oestrus with a control regimen (bovine serum albumin (BSA), i.m. + BSA intrauterine (i.u.)), rBoIFN-alpha, i.u. + BSA, i.m. (rBoIFN-IU) or rBoIFN-alpha, i.m. + BSA, i.u. (rBoIFN-IM). On Day 17, plasma concentrations of 13,14-dihydro,15-keto-prostaglandin F-2 alpha (PGFM) were measured after injection of oxytocin. Cows treated with rBoIFN-IU and rBoIFN-IM had longer oestrous cycles and luteal lifespans than control cows. A hyperthermic response and decline in plasma concentrations of progesterone was noticed after administration of rBoIFN-alpha on Day 14. On other days, the hyperthermic response was not present and the decline in progesterone was less pronounced. There was no significant effect of rBoIFN-alpha on circulating concentrations of oestradiol between Days 14 and 17. The release of PGFM induced by oxytocin was lower in cows treated with rBoIFN-alpha than in control cows. Oxytocin caused increased plasma concentrations of PGFM in four of five control cows, two of five rBoIFN-IU cows and two of five rBoIFN-IM cows. The peak PGF-2 alpha response to oxytocin (peak value after injection minus mean concentration before injection) was 257.8 +/- 61.3 pg/ml for control cows, 100.7 +/- 40.8 pg/ml for rBoIFN-IU and 124.9 +/- 40.4 pg/ml for rBoIFN-IM. It is concluded that rBoIFN-alpha can reduce oxytocin-induced PGFM release and may therefore extend the lifespan of the corpus luteum by interfering with events leading to luteolytic release of PGF from the uterus. Administration of rBoIFN-alpha can cause acute changes in body temperature and circulating concentrations of progesterone that become less severe after repeated exposure to rBoIFN-alpha.  相似文献   

8.
Ovarian and luteal blood flow rates were studied using radioactive microspheres in guinea-pigs between Day 6 of the oestrous cycle and Day 1 of the following cycle. Peripheral plasma progesterone levels were measured by radioimmunoassay on the same days of the oestrous cycle. Ovarian blood flow was greatest between Days 9 and 12 and had fallen by Day 16 both in absolute (ml . min-1) and relative (ml.min-1.g-1) terms. Luteal weight and blood flow were also greatest between Days 9 and 12 and had fallen sharply by Day 16. The highest mean (+/- s.d.) luteal flows measured were 0.10 +/- 0.04 ml.min-1 per corpus luteum, and 24.26 +/- 9.3 ml.min-1.g-1 luteal tissue on Day 10 of the cycle. Mean peripheral plasma progesterone levels reached a maximum of 3.66 +/- 1.1 ng/ml at Day 12 of the cycle and fell thereafter, reaching 0.74 +/- 0.5 ng/ml by Day 1 of the following cycle. Plasma progesterone levels declined significantly between Days 12 and 14 of the cycle, whereas no significant drop in luteal blood flow was demonstrable until after Day 14. These data do not support the idea that declining luteal blood flow is an initiating mechanism in luteal regression in the guinea-pig.  相似文献   

9.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Corpora lutea (n = 20) were detected in 5 one-humped female camels studied during a period of 4 months. Complete mating by a vasectomized male, male introduction into the pen of females without mating, or a progesterone decrease from a previous corpus luteum were followed by a similar progesterone pattern. A maximal plasma concentration of 4.5 +/- 1.5 ng progesterone/ml (2.7-8.8 ng/ml) occurred 8.55 +/- 1.32 days (6-11 days) after the inducing stimulus. Luteal regression, beginning 8.65 +/- 1.18 days after the stimulus, was completed at Day 11.55 +/- 1.05. Morphological development of ovarian structures, detected by rectal palpation, was in synchrony with the progesterone increase, but there was a prolonged period of regression. Females accepted mating up to 7 days after the ovulatory stimulus, when progesterone levels were as high as 3.5 ng/ml. This study establishes the absence of pseudopregnancy in the one-humped female camel, and offers opportunities for improving the management of reproduction. It also shows that ovulatory stimuli other than mating can be effective in these animals.  相似文献   

11.
The effect of treatment with a GnRH agonist, hCG or progesterone (P(4)) on corpus luteum function and embryonic mortality was investigated in buffaloes inseminated during mid-winter. Italian Mediterranean buffaloes (n=309) were synchronized using the Ovsynch with timed-AI program and mated by AI at 16 h (Day 0) and 40 h after the second injection of GnRH. On Day 5, buffaloes were randomly assigned to four groups: Control (no treatment, n=69), GnRH agonist (buserelin acetate, 12.6 microg, n=73), hCG (1500 IU, n=75) and P(4) (PRID without E(2) for 10 days, n=77). Progesterone (pg/ml) was determined in milk whey on Days 5, 10, 15 and 20 and pregnancy diagnosis was undertaken on Day 26 by ultrasound and Day 40 by rectal palpation. Treatment with buserelin and hCG increased (p<0.05) P(4) on Day 15 compared with controls (456+/-27, 451+/-24 and 346+/-28 pg/ml, respectively). Buffaloes treated with a PRID had intermediate P(4) concentrations (380+/-23 pg/ml). Embryonic mortality between Days 26 and 40 (22.9%) and pregnancies at Day 40 (48.9%) did not differ between treatments. A higher (p<0.01) P(4) concentration was found on Day 20 in pregnant animals compared with non-pregnant and embryonic mortality buffaloes, which did not differ. In summary, buserelin and hCG increased P(4) concentrations on Day 15 but this was not associated with a reduced incidence of embryonic mortality in buffaloes during mid-winter.  相似文献   

12.
Concentrations of progesterone, oxytocin and PGFM (pulmonary metabolite of PGF-2 alpha) were measured in plasma from peripheral blood samples collected from 5 fallow does every hour or 2 h for 12-h periods on Days 15-20 inclusive of the oestrous cycle (i.e. luteolysis). For 3 does that exhibited oestrus on Day 21, plasma progesterone concentrations fluctuated between 3 and 10 ng/ml on Days 15-18 inclusive. Thereafter, values declined progressively to attain minimum concentrations of less than 0.05 ng/ml on Day 20. Basal concentrations of plasma oxytocin and PGFM fluctuated between 5 and 20 pg/ml and 10 and 100 pg/ml respectively. Episodic pulses of plasma oxytocin (greater than 300 pg/ml) occurred on Days 15 and 16, whereas pulses of plasma PGFM (greater than 400 pg/ml) occurred on Days 19 and 20. There was little apparent correlation between episodic pulses of the two hormones. For 2 does that exhibited oestrus on Day 22, plasma progesterone concentrations declined to minimum values of 1.0-1.5 ng/ml by Day 20. One of these does showed very high levels of oxytocin secretion throughout the sampling period while the other showed an apparent paucity of oxytocin secretory periods. Two does hysterectomized on Day 13 of their second oestrous cycle failed to exhibit further oestrous cycles. Continual elevation of plasma progesterone concentrations (2-6 ng/ml) for an 8-month period indicated persistence of the corpus luteum after hysterectomy. It is concluded that luteolysis in fallow deer involves episodic secretion of both oxytocin and PGF-2 alpha.  相似文献   

13.
Oestradiol-17 beta concentrations were measured by radioimmunoassay in peripheral blood samples from 10 tammar wallabies after their pouch young were removed to terminate embryonic diapause. Oestradiol concentrations rose from 8.3 +/- 1.2 pg/ml on Days 3 and 4 to peak of 15.8 +/- 2.9 pg/ml on Day 5, coincident with an increase in 'progesterone' concentrations, and then fell to 10.5 +/- 2.7 pg/ml on Day 7. No changes in oestradiol concentrations were associated with parturition. Five females came into oestrus and mated 9.8 +/- 6.1 h post partum; peak concentrations of plasma oestradiol (20.9 +/- 2.1 pg/ml) occurred around the time of mating. None of the females that did not mate up to the end of the experiment at Day 30 had a rise in plasma oestradiol concentrations. Corpora lutea contained 20-100 pg oestradiol during pregnancy. The highest ovarian oestradiol content (greater than 1200 pg) was measured in whole ovaries containing Graafian follicles from full-term pregnant females. The rise in oestradiol concentrations at Day 5 may be important in the termination of diapause. The post-partum increase in plasma oestradiol concentrations coincides with oestrus. The source of this oestrogen appears to be the preovulatory follicle.  相似文献   

14.
Premature regression of the corpus luteum, following the first post partum ovulation, is often preceded by sub-optimal preovulatory oestradiol secretion and accompanied by elevated levels of oxytocin receptors early in the luteal phase. We have investigated the role of preovulatory oestradiol in the control of subsequent oxytocin receptor concentration and activity by treating ovariectomised cows, over a simulated 48 h follicular phase, with high (600 microg per day) medium (300 microg per day) or low (150 microg per day) levels of oestradiol. These doses of oestradiol generated mean+/-S.E.M. plasma oestradiol concentrations of 12.1+/-1.0, 4.9+/-0.5 and 2.9+/-0.4 pg ml(-1), respectively. In Study 1 (n=4 per group), we found that by day 4 following oestrus there was a significant (P< 0.05) effect of the level of oestradiol on the inhibition of oxytocin binding activity measured in endometrial biopsy samples. This had fallen to mean+/-S.E.M. concentrations of 25+/-2 fmol per mg protein in the high group, 47+/-8 fmol per mg protein in the medium group and 65+/-12 fmol per mg protein in the low group. In Study 2, cows (n=3 per group) were treated with the same three levels of oestradiol followed by treatment with increasing levels of progesterone from days 3 to 6 following oestrus, generating mean+/-S.E.M. plasma concentrations of 2.17+/-0.18 ng ml(-1) by day 6. On day 6, there was a significant (P< 0.01) effect of the level of oestradiol on PGF(2alpha) release in response to oxytocin challenge. High, medium and low oestradiol groups exhibiting mean+/-S.E.M., increase plasma PGF(2alpha) metabolite concentrations of 10.0+/-2.2, 21.3+/-4.3 and 41.3+/-1.2 pg ml(-1), respectively, during the hour after oxytocin administration. From these results, we postulate that at the first post partum ovulation a low level of preovulatory oestradiol can result in the early generation of a luteolytic mechanism during the subsequent luteal phase due to impaired inhibition of oxytocin receptors allowing increased PGF(2alpha) release.  相似文献   

15.
The aim of the present study was to evaluate the susceptibility of the corpus luteum to d-cloprostenol (synthetic analog of PGF(2α)) throughout the luteal phase in llamas. Female llamas (n=43) were induced to ovulate by GnRH injection in the presence of an ovulatory follicle and randomly assigned into one of six groups: control and treated with an injection of d-cloprostenol on Day 3, 4, 5, 6 or 8 post GnRH. Blood samples were collected to determine plasma progesterone concentrations. There was no effect of treatment on animals injected on Day 3 or 4 post-GnRH. In animals treated on Day 5, different responses were observed. No effect of treatment was recorded in 27% of the animals whereas 55% of the llamas showed a transitory decrease followed by a recovery in plasma progesterone concentrations after d-cloprostenol injection, indicative of a resurgence of the corpus luteum, extending the luteal phase a day more than in control animals. In the remaining 18% of the animals injected on Day 5, (corresponding to those exhibiting the greatest plasma progesterone concentrations at the day of injection), complete luteolysis was observed. Plasma progesterone concentrations decreased to below 1 ng ml(-1) 24 h after d-cloprostenol in llamas injected on Day 6 or 8 post-GnRH. In conclusion, the corpus luteum of llamas is completely refractory to PGF(2α) until Day 4 after induction of ovulation, being partially sensitive by Day 5 and fully responsive to PGF(2α), by Day 6 after induction of ovulation.  相似文献   

16.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

17.
To determine the threshold of prostaglandin F2 alpha (PGF2 alpha)-stimulated oxytocin secretion from the ovine corpus luteum, low levels of PGF2 alpha (5-100 pg/min) were infused into the ovarian arterial blood supply of sheep with ovarian autotransplants. PGF2 alpha was infused for six sequential 10-min periods at hourly intervals, 6, 12, or 24 days after estrus (n = 3 for each day). Each cycle day was studied during a separate cycle. Oxytocin and progesterone in ovarian venous and carotid arterial plasma was measured by radioimmunoassay, and secretion rates were determined (venous-arterial concentration x plasma flow). In animals treated on Day 6, 5 pg/min PGF2 alpha caused a significant release of oxytocin (p less than 0.01), whereas in animals treated on Day 12, this threshold was 40 pg/min (p less than 0.05). In animals treated on Day 24, the threshold for oxytocin release was greater than 100 pg/min. PGF2 alpha did not significantly change ovarian blood flow or progesterone secretion rate on any day (p greater than 0.05). To determine residual luteal oxytocin after each threshold experiment, 5 mg PGF2 alpha was given i.m. to all animals. Significantly more oxytocin was released by Day 6 than by Day 12 and Day 24 corpora lutea, and by Day 12 than by Day 24 corpora lutea (1.2 micrograms, 0.7 microgram, and 0.3 microgram, respectively; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Post-partum acyclic beef cows received continuous long-term treatment with GnRH (200 or 400 ng/kg body wt/h) or the GnRH agonist buserelin (5.5 or 11 ng/kg body wt/h) using s.c. osmotic minipumps which were designed to remain active for 28 days. All treatments increased circulating LH concentrations whereas FSH remained unchanged. Ovulation and corpus luteum (CL) formation as judged by progesterone concentrations greater than or equal to 1 ng/ml occurred in 0/5 control, 4/5 200 ng GnRH, 4/4 400 ng GnRH, 4/5 5.5 ng buserelin and 3/5 11 ng buserelin cows. The outstanding features of the progesterone profiles were the synchrony, both within and across groups, in values greater than or equal to 1 ng/ml around Day 6, and the fact that most CL were short-lived (4-6 days). Only 3 cows, one each from the 400 ng GnRH, 5.5 ng buserelin and 11 ng buserelin groups, showed evidence of extended CL function. Cows failed to show a second ovulation which was anticipated around Day 10 and this could have been due to insufficient FSH to stimulate early follicular development, or the absence of an endogenously driven LH surge. The highest LH concentrations for the respective groups were observed on Days 2 and 6 and by Day 10 LH was declining, although concentrations did remain higher than in controls up to Day 20.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

20.
A total of 71 synchronized dairy heifers (Holstein Friesian x German Black Pied) were used as recipients of seven-day old frozen/thawed bovine embryos. Plasma progesterone concentrations and corpus luteum quality on the day of nonsurgical transfer (= day 7) were determined and related to pregnancy rates or estrus intervals in nonpregnant recipients. A total of 32 recipients (45.1 %) maintained pregnancy; 39 recipients (54.9 %) did not. No significant differences could be detected between progesterone levels in recipients that remained pregnant (3.14 +/- 0.24 ng/ml; x +/- SEM ) and those that did not maintain pregnancy (3.23 +/- 0.28 ng/ml). Optimal progesterone levels were between 2 and 5 ng/ml coinciding with a pregnancy rate of 51.1 % (24 47 ). Pregnancy rates apparently were decreased when progesterone levels were below 2 ng/ml (35.3 %; 6 17 ) or above 5 ng/ml (28.6 %; 2 7 ). Hence, optimal progesterone levels were identical to those for freshly collected embryos reported previously by Remsen et al. (1). Bovine corpus luteum quality graded by rectal palpation was related to some extent to progesterone levels but not to pregnancy rates. Out of 39 nonpregnant recipients seven animals (17.9 %) with a mean plasma progesterone level of 3.76 +/- 0.72 ng/ml showed an extended estrus interval of more than 55 days, probably indicating early embryonic mortality. Progesterone levels did not significantly differ between nonpregnant recipients with estrus intervals of various length. Plasma progesterone levels at the time of transfer are of limited diagnostic value for screening recipients prior to transfer of frozen/thawed embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号