首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The biosyntheses of both macrocyclic trichothecenes in Myrothecium roridum and simple trichothecenes in Fusarium species begin with the cyclization of farnesyl pyrophosphate to form the sesquiterpene hydrocarbon trichodiene. A previous study showed that Myrothecium has a cluster of 3 genes that are homologous with Fusarium trichothecene genes: Tri4, a P450 oxygenase; Tri5, the sesquiterpene cyclase; and Tri6, a zinc-finger regulatory gene. Fusarium graminearum Tri4 (FgTri4) and M. roridum MrTri4 (MrTri4) have 66.9% identity. In this study, MrTri4 was expressed in Fusarium verticillioides. Liquid cultures of transformant strains expressing MrTri4 converted exogenous trichodiene to isotrichodiol, indicating that MrTri4 controls 3 oxygenation steps and that the product of MrTRI4 is isotrichodiol.  相似文献   

2.
Fusarium graminearum and Fusarium sporotrichioides produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. In both species, disruption of the P450 monooxygenase-encoding gene, Tri4, blocks production of the mycotoxins and leads to the accumulation of the trichothecene precursor trichodiene. To further characterize its function, the F. graminearum Tri4 (FgTri4) was heterologously expressed in the trichothecene-nonproducing species Fusarium verticillioides. Transgenic F. verticillioides carrying the FgTri4 converted exogenous trichodiene to the trichothecene biosynthetic intermediates isotrichodermin and trichothecene. Conversion of trichodiene to isotrichodermin requires seven biochemical steps. The fifth and sixth steps can occur nonenzymatically. Precursor feeding studies done in the current study indicate that wild-type F. verticillioides has the enzymatic activity necessary to carry out the seventh step, the C-3 acetylation of isotrichodermol to form isotrichodermin. Together, the results of this study indicate that the Tri4 protein catalyzes the remaining four steps and is therefore a multifunctional monooxygenase required for trichothecene biosynthesis.  相似文献   

3.
4.
Fusarium Tri4 encodes a cytochrome P450 monooxygenase (CYP) for hydroxylation at C-2 of the first committed intermediate trichodiene (TDN) in the biosynthesis of trichothecenes. To examine whether this CYP further participates in subsequent oxygenation steps leading to isotrichotriol (4), we engineered Saccharomyces cerevisiae for de novo production of the early intermediates by introducing cDNAs of Fusarium graminearum Tri5 (FgTri5 encoding TDN synthase) and Tri4 (FgTri4). From a culture of the engineered yeast grown on induction medium (final pH 2.7), we identified two intermediates, 2alpha-hydroxytrichodiene (1) and 12,13-epoxy-9,10-trichoene-2alpha-ol (2), and a small amount of non-Fusarium trichothecene 12,13-epoxytrichothec-9-ene (EPT). Other intermediates isotrichodiol (3) and 4 were identified in the transgenic yeasts grown on phosphate-buffered induction medium (final pH 5.5-6.0). When Trichothecium roseum Tri4 (TrTri4) was used in place of FgTri4, 4 was not detected in the culture. The three intermediates, 1, 2, and 3, were converted to 4,15-diacetylnivalenol (4,15-diANIV) when fed to a toxin-deficient mutant of F. graminearum with the FgTri4+ genetic background (viz., by introducing a FgTri5- mutation), but were not metabolized by an FgTri4- mutant. These results provide unambiguous evidence that FgTri4 encodes a multifunctional CYP for epoxidation at C-12,13, hydroxylation at C-11, and hydroxylation at C-3 in addition to hydroxylation at C-2.  相似文献   

5.
Thirty-one isolates of Stachybotrys chartarum from indoor and outdoor environments were analyzed for the presence of the trichodiene synthase (Tri5) gene, trichothecenes, boar sperm cell motility inhibition, and randomly amplified polymorphic DNA banding patterns (RAPDs). Twenty-two S. chartarum isolates tested positive for the Tri5 gene and nine were negative when tested using novel Tri5 gene-specific PCR primer pair. The Tri5 gene positive isolates contained satratoxins (five isolates) or the simple trichothecene, trichodermol (11 isolates). The Tri5 gene negative isolates did not produce satratoxins or trichodermol. Nineteen S. chartarum isolates, distributed among the Tri5 gene negative and positive groups, inhibited boar spermatozoan motility at concentrations of < or = 60 microg of crude cell extract/mL. The inhibition of motility was independent of satratoxins or atranones. Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of RAPD fragments clustered the 31 S. chartarum isolates in two distinct groups designated as RAPD groups 1 and 2. The grouping of S. chartarum isolates obtained by UPGMA cluster analysis of RAPD fragments was identical to the grouping obtained by Tri5 gene-specific PCR. This indicates that the S. chartarum isolates belonging to different groups were genetically distinct in a much wider area than just the Tri5 gene.  相似文献   

6.
The trichodiene synthase gene (Tox5) was isolated from Gibberella pulicaris, and its nucleotide sequence was determined. Tox5 was disrupted through transformation with a plasmid carrying a doubly truncated copy of the coding region and a selectable marker for resistance to hygromycin B (Hygr). Analysis of 82 transformants for their ability to produce the trichothecene, 4,15-diacetoxyscirpenol (DAS), resulted in the identification of five DAS- strains. Southern hybridization analysis of DAS- Hygr transformants indicated that the plasmid integrated at the Tox5 locus. The disrupted Tox5 gene was shown to be mitotically stable. Analysis of nine tetrads revealed either the cosegregation of the disrupter plasmid and the DAS- phenotype or the loss of the disrupter plasmid. These results demonstrate the feasibility of using gene disruption in G. pulicaris and suggest a general method for obtaining Tox5- mutants in other trichothecene-producing fungi.  相似文献   

7.
The trichodiene synthase (tri5) gene of Fusarium venenatum was cloned from a genomic library. Vectors were created in which the tri5 coding sequence was replaced with the Neurospora crassa nitrate reductase (nit3) gene and with the Aspergillus nidulans acetamidase (amdS) gene flanked by direct repeats. The first vector was utilized to transform a nitrate reductase (niaD) mutant of F. venenatum to prototrophy, and the second vector was utilized to confer acetamide utilization to the wild-type strain. Several of the transformants lost the capacity to produce the trichothecene diacetoxyscirpenol and were shown by hybridization analysis to have gene replacements at the tri5 locus. The nit3 gene was removed by retransformation with a tri5 deletion fragment and selection on chlorate. The amdS gene was shown to excise spontaneously via the flanking direct repeats when spores were plated onto fluoroacetamide.  相似文献   

8.
Fusarium graminearum (FG) is a serious plant pathogen causing huge losses in global production of wheat and other cereals. Tri5-gene encoded trichodiene synthase is the first key enzyme for biosynthesis of trichothecene mycotoxins in FG. To further our understandings of FG metabolism which is essential for developing novel strategies for controlling FG, we conducted a comprehensive investigation on the metabolic changes caused by Tri5-deletion by comparing metabolic differences between the wild-type FG5035 and an FG strain, Tri5(-), with Tri5 deleted. NMR methods identified more than 50 assigned fungal metabolites. Combined metabonomic and quantitative RT-PCR (qRT-PCR) analyses revealed that Tri5 deletion caused significant and comprehensive metabolic changes for FG apart from mycotoxin biosynthesis. These changes involved both carbon and nitrogen metabolisms including alterations in GABA shunt, TCA cycle, shikimate pathway, and metabolisms of lipids, amino acids, inositol, choline, pyrimidine, and purine. The hexose transporter has also been affected. These findings have shown that Tri5 gene deletion induces widespread changes in FG primary metabolism and demonstrated the combination of NMR-based metabonomics and qRT-PCR analyses as a useful way to understand the systems metabolic changes resulting from a single specific gene knockout in an eukaryotic genome and thus Tri5 gene functions.  相似文献   

9.
The gene encoding trichodiene synthase (Tri5), a sesquiterpene synthase from the fungus Fusarium sporotrichioides, was used to transform tobacco (Nicotiana tabacum). Trichodiene was the sole sesquiterpene synthase product in enzyme reaction mixtures derived from unelicited transformant cell-suspension cultures, and both trichodiene and 5-epi-aristolochene were observed as reaction products following elicitor treatment. Immunoblot analysis of protein extracts revealed the presence of trichodiene synthase only in transformant cell lines producing trichodiene. In vivo labeling with [3H]mevalonate revealed the presence of a novel trichodiene metabolite, 15-hydroxytrichodiene, that accumulated in the transformant cell-suspension cultures. In a trichodiene-producing transformant, the level of 15-hydroxytrichodiene accumulation increased after elicitor treatment. In vivo labeling with [14C]acetate showed that the biosynthetic rate of trichodiene and 15-hydroxytrichodiene also increased after elicitor treatment. Incorporation of radioactivity from [14C]acetate into capsidiol was reduced following elicitor treatment of a trichodiene-producing transformant as compared with wild type. These results demonstrate that sesquiterpenoid accumulation resulting from the constitutive expression of a foreign sesquiterpene synthase is responsive to elicitation and that the farnesyl pyrophosphate present in elicited cells can be utilized by a foreign sesquiterpene synthase to produce high levels of novel sesquiterpenoids.  相似文献   

10.
11.
12.
Members of the mitosporic fungal form-genus Stachybotrys, including common indoor contaminants Stachybotrys chartarum, Stachybotrys echinata and Stachybotrys chlorohalonata, are capable of producing potent, protein synthesis-inhibiting, trichothecene mycotoxins. A combined multi-gene approach was used to investigate relationships among species of Stachybotrys against which the presence/absence of the trichothecene biosynthetic pathway gene, trichodiene synthase (tri5), was evaluated. Phylogenetic analyses partitioned species of Stachybotrys into three strongly supported lineages, two of which contained common indoor taxa. No tri5 PCR product was amplified from members of the third clade, which included the only member of the group with a known sexual state, Stachybotrys albipes. Isolates grouped with S. albipes also tested negative for tri5 in Southern analyses. The phylogenetic distribution of tri5 was consistent with known toxin production for the group. For isolates with tri5 product, Bayesian analysis suggested that signal from amino acid determining sites conflicted with the combined phylogeny. Incongruence however, was not supported by either SH-test results or maximum likelihood analyses. Moreover, sites rates analysis showed that tri5 was highly conserved at the amino acid level suggesting that identity at variable sites, among otherwise divergent taxa, might be the result of chance events.  相似文献   

13.
Stachybotrys chartarum has received much attention as a possible cause of sick-building syndrome. Because morphological species recognition in fungi can hide diversity, we applied a phylogenetic approach to search for cryptic species. We examined 23 isolates from the San Francisco Bay Area, and another seven from around the US. Using markers we developed for three polymorphic protein coding loci (chitin synthase 1, beta-tubulin 2, and trichodiene synthase 5), we infer that two distinct phylogenetic species exist within the single described morphological species. We have found no correlation between genetic isolation and geographic distance.  相似文献   

14.
We developed a PCR-based assay to quantify trichothecene-producing Fusarium based on primers derived from the trichodiene synthase gene (Tri5). The primers were tested against a range of fusarium head blight (FHB) (also known as scab) pathogens and found to amplify specifically a 260-bp product from 25 isolates belonging to six trichothecene-producing Fusarium species. Amounts of the trichothecene-producing Fusarium and the trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from a field trial designed to test the efficacies of the fungicides metconazole, azoxystrobin, and tebuconazole to control FHB were quantified. No correlation was found between FHB severity and DON in harvested grain, but a good correlation existed between the amount of trichothecene-producing Fusarium and DON present within grain. Azoxystrobin did not affect levels of trichothecene-producing Fusarium compared with those of untreated controls. Metconazole and tebuconazole significantly reduced the amount of trichothecene-producing Fusarium in harvested grain. We hypothesize that the fungicides affected the relationship between FHB severity and the amount of DON in harvested grain by altering the proportion of trichothecene-producing Fusarium within the FHB disease complex and not by altering the rate of DON production. The Tri5 quantitative PCR assay will aid research directed towards reducing amounts of trichothecene mycotoxins in food and animal feed.  相似文献   

15.
Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species.  相似文献   

16.
The trichothecene 3-O-acetyltransferase gene (FgTri101) required for trichothecene production by Fusarium graminearum is located between the phosphate permease gene (pho5) and the UTP-ammonia ligase gene (ura7). We have cloned and sequenced the pho5-to-ura7 regions from three trichothecene nonproducing Fusarium (i.e., F. oxysporum, F. moniliforme, and Fusarium species IFO 7772) that belong to the teleomorph genus Gibberella. BLASTX analysis of these sequences revealed portions of predicted polypeptides with high similarities to the TRI101 polypeptide. While FspTri101 (Fusarium species Tri101) coded for a functional 3-O-acetyltransferase, FoTri101 (F. oxysporum Tri101) and FmTri101 (F. moniliforme Tri101) were pseudogenes. Nevertheless, F. oxysporum and F. moniliforme were able to acetylate C-3 of trichothecenes, indicating that these nonproducers possess another as yet unidentified 3-O-acetyltransferase gene. By means of cDNA expression cloning using fission yeast, we isolated the responsible FoTri201 gene from F. oxysporum; on the basis of this sequence, FmTri201 has been cloned from F. moniliforme by PCR techniques. Both Tri201 showed only a limited level of nucleotide sequence similarity to FgTri101 and FspTri101. The existence of Tri101 in a trichothecene nonproducer suggests that this gene existed in the fungal genome before the divergence of producers from nonproducers in the evolution of Fusarium species.  相似文献   

17.
18.
Fusarium head blight caused by Fusarium graminearum is a disease of cereal crops that not only reduces crop yield and quality but also results in contamination with trichothecenes such as nivalenol and deoxynivalenol (DON). To analyze the trichothecene induction mechanism, effects of 12 carbon sources on the production of DON and 3-acetyldexynivalenol (3ADON) were examined in liquid cultures incubated with nine strains of 3ADON-producing F. graminearum. Significantly high levels of trichothecene (DON and 3ADON) production by sucrose, 1-kestose and nystose were commonly observed among all of the strains tested. On the other hand, the levels of trichothecene biosynthesis induced by the other carbon sources were strain-specific. Tri4 and Tri5 expressions were up-regulated in the sucrose-containing medium but not in glucose. Trichothecene accumulation in the sucrose-containing medium was not repressed by the addition of glucose, indicating that trichothecene production was not regulated by carbon catabolite repression. These findings suggest that F. graminearum recognizes sucrose molecules, activates Tri gene expression and induces trichothecene biosynthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号