首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermine binding protein (SBP) is a rat ventral prostate protein that binds various polyamines, and the level of this protein and its mRNA is regulated by androgens. Previously, the cDNA for SBP was cloned and sequenced and an amino acid sequence deduced from the cDNA. Data from cloned and sequenced and an amino acid sequence deduced from the cDNA. Data from partial amino acid sequencing of the purified protein were consistent with the amino acid sequence deduced from the cDNA. However, the amino terminus of the protein was blocked, and therefore, direct protein sequence information confirming the cDNA reading frame of this region could not be obtained by Edman degradation. We have now employed an integrated approach using fast atom bombardment mass spectrometry, tandem mass spectrometry, and conventional sequencing methodologies to establish the amino-terminal sequence of the protein and to identify an amino acid sequence (35 residues) present in the purified protein but missing from the amino acid sequence deduced from cDNA clones for this protein. The missing piece of cDNA corresponds to an exon found in mouse genomic clones for a protein similar to rat SBP. Therefore, the cDNA clones for rat SBP may represent splicing variants that lack the sequence information of one exon. The blocked amino terminus of the protein was identified as 5-oxopyrrolidine-2-carboxylic acid. Mass spectrometry also provided evidence regarding glycosylation of the protein. The first of two potential glycosylation sites clearly carries carbohydrate; the second site is, at most, only partially glycosylated.  相似文献   

2.
3.
4.
The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments.  相似文献   

5.
Tao Y  Julian RR 《Biochemistry》2012,51(8):1796-1802
A simple mass spectrometry-based method capable of examining protein structure called SNAPP (selective noncovalent adduct protein probing) is used to evaluate the structural consequences of point mutations in naturally occurring sequence variants from different species. SNAPP monitors changes in the attachment of noncovalent adducts to proteins as a function of structural state. Mutations that lead to perturbations to the electrostatic surface structure of a protein affect noncovalent attachment and are easily observed with SNAPP. Mutations that do not alter the tertiary structure or electrostatic surface structure yield similar results by SNAPP. For example, bovine, porcine, and human insulin all have very similar backbone structures and no basic or acidic residue mutations, and the SNAPP distributions for all three proteins are very similar. In contrast, four variants of cytochrome c (cytc) have varying degrees of sequence homology, which are reflected in the observed SNAPP distributions. Bovine and pigeon cytc have several basic or acidic residue substitutions relative to horse cytc, but the SNAPP distributions for all three proteins are similar. This suggests that these mutations do not significantly influence the protein surface structure. On the other hand, yeast cytc has the least sequence homology and exhibits a unique, though related, SNAPP distribution. Even greater differences are observed for lysozyme. Hen and human lysozyme have identical tertiary structures but significant variations in the locations of numerous basic and acidic residues. The SNAPP distributions are quite distinct for the two forms of lysozyme, suggesting significant differences in the surface structures. In summary, SNAPP experiments are relatively easy to perform, require minimal sample consumption, and provide a facile route for comparison of protein surface structure between highly homologous proteins.  相似文献   

6.
Direct analysis of protein complexes using mass spectrometry.   总被引:56,自引:0,他引:56  
We describe a rapid, sensitive process for comprehensively identifying proteins in macromolecular complexes that uses multidimensional liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to separate and fragment peptides. The SEQUEST algorithm, relying upon translated genomic sequences, infers amino acid sequences from the fragment ions. The method was applied to the Saccharomyces cerevisiae ribosome leading to the identification of a novel protein component of the yeast and human 40S subunit. By offering the ability to identify >100 proteins in a single run, this process enables components in even the largest macromolecular complexes to be analyzed comprehensively.  相似文献   

7.
8.
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three‐dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N‐ and C‐terminal tails were evaluated using 1H‐15N HSQC and 1H‐15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS‐based truncated construct for a 77‐residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In this work, the commonly used algorithms for mass spectrometry based protein identification, Mascot, MS-Fit, ProFound and SEQUEST, were studied in respect to the selectivity and sensitivity of their searches. The influence of various search parameters were also investigated. Approximately 6600 searches were performed using different search engines with several search parameters to establish a statistical basis. The applied mass spectrometric data set was chosen from a current proteome study. The huge amount of data could only be handled with computational assistance. We present a software solution for fully automated triggering of several peptide mass fingerprinting (PMF) and peptide fragmentation fingerprinting (PFF) algorithms. The development of this high-throughput method made an intensive evaluation based on data acquired in a typical proteome project possible. Previous evaluations of PMF and PFF algorithms were mainly based on simulations.  相似文献   

10.
Recent achievements in genomics have created an infrastructure of biological information. The enormous success of genomics promptly induced a subsequent explosion in proteomics technology, the emerging science for systematic study of proteins in complexes, organelles, and cells. Proteomics is developing powerful technologies to identify proteins, to map proteomes in cells, to quantify the differential expression of proteins under different states, and to study aspects of protein-protein interaction. The dynamic nature of protein expression, protein interactions, and protein modifications requires measurement as a function of time and cellular state. These types of studies require many measurements and thus high throughput protein identification is essential. This review will discuss aspects of mass spectrometry with emphasis on methods and applications for large-scale protein identification, a fundamental tool for proteomics.  相似文献   

11.
12.
A full length cDNA (MP25) encoding the major mouse prostatic secretory glycoprotein (p25), whose expression is androgen dependent, has been cloned and characterised. Steady-state levels of mRNA are decreased approximately 100-fold after 3 days castration but are restored progressively over 4 days with testosterone treatment. The secreted glycoprotein appears to be a spermine binding protein since the nucleotide and predicted amino acid sequence of MP25 shares extensive homology with a spermine binding protein (SBP) found in rat ventral prostate. Genomic clones indicate that there is a single gene for SBP which consists of 4 exons, the first of which is only 11bp in length. The second exon encodes the signal peptide, the third contains a portion of the spermine binding protein unique to the mouse and the largest exon encodes the bulk of the secreted protein.  相似文献   

13.
Mass spectrometry (MS) was used to characterise the binding of the 58 kDa protein OppA to 11 peptides with diverse properties. Peptides with two, three and five amino acid residues were added to OppA, and the mass spectra showed that the highest-affinity complexes are formed between OppA and tripeptide ligands. Lower-affinity complexes were observed for OppA and dipeptide ligands, and no complex formation was detected with pentapeptides or a tripeptide in which the N-terminal amino group was acetylated. Tripeptides containing a single d amino acid residue were found not to bind to native OppA. Evidence from the peak width and the, charge in the spectra of the complexes suggests that the bound peptides are encapsulated by the protein in a solvent-filled cavity in the gas phase of the mass spectrometer. Analysis of the proportions of peptide-bound and free proteins under low-energy MS conditions shows a good correlation with solution-phase K(d) measurements where available. Increasing the internal energy of the gas-phase complex led to dissociation of the complex. The ease of dissociation is interpreted in terms of the intrinsic stability of the complex in the absence of the stabilising effects of bulk solvent. The results from this study demonstrate insensitivity to the hydrophobic and ionic properties, of the side-chains of the peptides, in contrast to the investigation of other protein ligand systems by MS. Moreover, these findings are in accord with the physiological role of this protein in allowing into the cell di- and tripeptides containing naturally occurring amino acids, regardless of their sequence, while barring access to potentially harmful peptide mimics.  相似文献   

14.
Analysis of protein complexes using mass spectrometry   总被引:1,自引:0,他引:1  
The versatile combination of affinity purification and mass spectrometry (AP-MS) has recently been applied to the detailed characterization of many protein complexes and large protein-interaction networks. The combination of AP-MS with other techniques, such as biochemical fractionation, intact mass measurement and chemical crosslinking, can help to decipher the supramolecular organization of protein complexes. AP-MS can also be combined with quantitative proteomics approaches to better understand the dynamics of protein-complex assembly.  相似文献   

15.
Fast atom bombardment mass spectrometry is used for the analysis of the series of molecular products formed by the cleavage of polypeptide substrates with the exopeptidases carboxypeptidase Y and leucine aminopeptidase. By following the polypeptide molecular species rather than the released residues, sequence information is obtained regardless of the relative rates of cleavage of peptide bonds. In addition, unambiguous assignments of sequence can be made in the presence of multiple identical residues. The lower level of sensitivity for the analysis is in the picomole range. When carboxypeptidase Y is used, the method provides a specific and sensitive method for the sequencing of polypeptides from the C-terminus.  相似文献   

16.
DNA sequence analysis by MALDI mass spectrometry.   总被引:2,自引:4,他引:2       下载免费PDF全文
Conventional DNA sequencing is based on gel electrophoretic separation of the sequencing products. Gel casting and electrophoresis are the time limiting steps, and the gel separation is occasionally imperfect due to aberrant mobility of certain fragments, leading to erroneous sequence determination. Furthermore, illegitimately terminated products frequently cannot be distinguished from correctly terminated ones, a phenomenon that also obscures data interpretation. In the present work the use of MALDI mass spectrometry for sequencing of DNA amplified from clinical samples is implemented. The unambiguous and fast identification of deletions and substitutions in DNA amplified from heterozygous carriers realistically suggest MALDI mass spectrometry as a future alternative to conventional sequencing procedures for high throughput screening for mutations. Unique features of the method are demonstrated by sequencing a DNA fragment that could not be sequenced conventionally because of gel electrophoretic band compression and the presence of multiple non-specific termination products. Taking advantage of the accurate mass information provided by MALDI mass spectrometry, the sequence was deduced, and the nature of the non-specific termination could be determined. The method described here increases the fidelity in DNA sequencing, is fast, compatible with standard DNA sequencing procedures, and amenable to automation.  相似文献   

17.
18.
Top-down mass spectrometry is an emerging technology which strives to preserve the post-translationally modified forms of proteins present in vivo by measuring them intact, rather than measuring peptides produced from them by proteolysis. The top-down technology is beginning to capture the interest of biologists and mass spectrometrists alike, with a main goal of deciphering interaction networks operative in cellular pathways. Here we outline recent approaches and applications of top-down mass spectrometry as well as an outlook for its future.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号