首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of fibres by radical formation is the first step when aiming at oxidative coupling of new functional groups on the fibre bound lignin. In this work, factors affecting the amount of phenoxy radicals created to unbleached TMP, CTMP, softwood kraft and hardwood kraft pulp fibres in the laccase catalysed oxidation were determined by EPR. Laccase was able to catalyse the oxidation of all the pulps studied. The reactivity of the pulp was found to be affected by both the physical accessibility of lignin in the fibres and the chemistry of the surface lignin accessible to laccase. Laccase dosage, use of extra oxygen in the laccase catalysed radicalization reaction, treatment time and also the amount and type of low-molecular weight compounds (LMWC) present in the pulp were all found to contribute to the radical content of pulp fibres measured after the enzymatic reaction. It could not been excluded that two types of reactions take place during the radical formation in fibres. Within the fibre matrix there may be both fibre material bound and soluble lignin fragments differing with respect to accessibility, molecular weight or chemical structure which can be radicalized at various rates, and the formed radicals may also undergo cross-coupling reactions reducing the amount of the total radicals.  相似文献   

2.
Previous investigations have shown that laccase catalyzed oxidation of lignin containing wood fibers can enhance the strength of medium density fiberboards. In the present work it was investigated if laccase treatment had any impact on the tensile strength of a high yield unbleached kraft pulp. Treatment with laccase alone had only a very little effect on the wet strength of the pulp, whereas addition of lignin rich extractives increased the wet strength after the enzyme treatment significantly. A mediated oxidation gave a similar improvement of the wet tensile strength although no lignin was added to the fiber suspension. Furthermore, it was found that a heat treatment combined with a mediated oxidation gave a higher improvement in wet tensile strength than could be accounted for by the individual treatments. No change in dry tensile strength from the laccase treatment was observed. It is suggested that the observed improvement in wet tensile strength is related to polymerization of lignin on fibers in the hand sheet and/or coupling of phenoxy radicals on lignin associated to adjacent fibers. For the different mediators studied, a correlation was found between oxygen consumption upon mediated oxidation and generation of wet strength in the pulp.  相似文献   

3.
During laccase-catalyzed oxidation of beech wood fibers in an aqueous suspension, phenoxy radicals were detected in steady-state concentrations by electron-spin resonance (ESR) spectrometry of the suspension liquid, suggesting that colloidal lignin functions as a mediator between laccase and the fiber lignin matrix. Phenoxy radicals were observed directly, whereas ESR spin-trapping techniques gave no evidence for reduced oxygen species, such as the superoxide or hydroxyl radical. A reaction mechanism involving parallel direct oxidation of the lignin on fiber surfaces and a phenol/phenoxy cyclic mediator process in the suspension liquid could accordingly describe laccase-catalyzed oxidation of beech wood fibers. Cytochrome c assays for detection of superoxide in systems involving lignin oxidized by oxidoreductases should be used with caution, as cytochrome c may be reduced by species other than superoxide. Received: 24 March 1997 / Received revision: 27 May 1997 / Accepted: 1 June 1997  相似文献   

4.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

5.
The radicalization of unbleached lignocellulosic fibers obtained from thermomechanical (TMP) and chemothermomechanical (CTMP) pulps was performed in heterogeneous phase by reaction with dioxygen in the presence of N,N'-ethylenebis(salicylideneiminato)cobalt(II), [Co(salen)], as catalyst. Phenoxy cobalt radicals immobilized in fibers were observed by electron paramagnetic resonance (EPR) spectroscopy; their amount depends on the fiber swelling induced by reaction medium. The absolute concentration of such radicals in fibers, about 10(16) spin/g, reaches values 10 times higher than that of phenoxy radicals formed in similar oxidative reactions catalyzed by laccase. The generation of phenoxy cobalt radicals in fibers was related to structural changes of lignin units, detected by mono- and bidimensional nuclear magnetic resonance ((13)C NMR and 2D-HSQC) investigations, and to morphological modifications in fibers observed by scanning electron microscopy (SEM).  相似文献   

6.
Phenol oxidase activity was detected for the first time in a number of strains belonging to various Azospirillum species. Both extracellular and intracellular activities of laccase, Mn-peroxidase, lignin peroxidase, and tyrosinase were observed. Extracellular enzymes were found to have higher activity. Significant differences in phenol oxidase activities were observed between species and strains.  相似文献   

7.
A laccase catalyzed oxidative treatment of wood pulp fibers has been found to induce unusual modifications of these fibers that are qualitatively different from those encountered when more severely degraded fibers are subjected to similar enzymatically catalyzed oxidative treatments. These results suggest that the physical/conformational state of the lignin of wood fibers determines which oxidation pathways dominate in a given oxidative treatment, leading to different lignin modifications depending on both the chemical and the physical structure of the lignin polymer. Spectroscopic measurements (ESR, IR, UV-Vis and fluorescence) show that the laccase treatment results in the formation of two different species in the dried fibers: one is interpreted as chemically transformed (via oxygen) lignin products, and the other as initial oxidation radicals which have gained stabilization against transformation into the first mentioned products via a migration mechanism. It is argued that these initial radicals may likely be cation radical (or hole state) parts in lignin. The migration mechanism is identified with site-to-site transfer or 'hopping' via electron transfer and it is postulated that this mechanism 'carries' cation radical parts of the lignin, produced at the surface of the fiber, into parts of the lignin where chemical transformation pathways are suppressed due to the lignin conformational state. The possible existence of such a migration mechanism, the relative dominance of which should depend sensitively on the polymer conformational state, may have implications for the biogeneration and biodegradation of lignin as well as for oxidative treatments of non-natural conjugated polymers.  相似文献   

8.
纤维二糖脱氢酶生成羟自由基和还原各种自由基的研究   总被引:2,自引:0,他引:2  
利用电子顺磁共振(ESR)技术和硫代巴比妥酸(TBA)反应研究了纤维二糖脱氢酶(CDH)生成·OH和还原各种自由基的能力.以纤维二糖为电子供体时,CDH可以生成·OH.·OH生成量与CDH、Fe3+和O2的浓度有关.加入过氧化氢酶可使·OH的生成明显减少.CDH可以还原自旋加合物[PBN-OH]·、氮氧自由基和天然木素分子中的自由基.结果表明,CDH具有生成·OH和还原各种自由基的能力.对该酶在木质纤维素降解中的作用进行了探讨  相似文献   

9.
Previous work has shown that the white rot fungus Coriolopsis rigida degraded wheat straw lignin and both the aliphatic and aromatic fractions of crude oil from contaminated soils. To better understand these processes, we studied the enzymatic composition of the ligninolytic system of this fungus. Since laccase was the sole ligninolytic enzyme found, we paid attention to the oxidative capabilities of this enzyme that would allow its participation in the mentioned degradative processes. We purified two laccase isoenzymes to electrophoretic homogeneity from copper-induced cultures. Both enzymes are monomeric proteins, with the same molecular mass (66 kDa), isoelectric point (3.9), N-linked carbohydrate content (9%), pH optima of 3.0 on 2,6-dimethoxyphenol (DMP) and 2.5 on 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), absorption spectrum, and N-terminal amino acid sequence. They oxidized 4-anisidine and numerous phenolic compounds, including methoxyphenols, hydroquinones, and lignin-derived aldehydes and acids. Phenol red, an unusual substrate of laccase due to its high redox potential, was also oxidized. The highest enzyme affinity and efficiency were obtained with ABTS and, among phenolic compounds, with 2,6-dimethoxyhydroquinone (DBQH2). The presence of ABTS in the laccase reaction expanded the substrate range of C. rigida laccases to nonphenolic compounds and that of MBQH2 extended the reactions catalyzed by these enzymes to the production of H2O2, the oxidation of Mn2+, the reduction of Fe3+, and the generation of hydroxyl radicals. These results confirm the participation of laccase in the production of oxygen free radicals, suggesting novel uses of this enzyme in degradative processes.  相似文献   

10.
Lignosulfonates(LSs), by-products from chemical pulping processes, are low-value products with limited dispersion properties. The ability of commercially available horseradish peroxidase (HRP) to polymerize LS macromolecules and improve the dispersion properties of LSs was investigated. The polymerization of LSs proceeded efficiently under mild reaction conditions in an aqueous solution with HRP/H2O2. Gel permeation chromatography showed a significant increase in weight-average molecular weight (M w ) of sulfonated kraft lignin and sodium lignosulfonate (NaLS) by 8.5-fold and 4.7-fold, respectively. The mechanism of polymerization was investigated by elemental analysis, surface charge measurement, headspace gas chromatography, infrared spectroscopy (IR), and hydrogen nuclear magnetic resonance spectrometry (1H-NMR). The functional group measurements indicated that HRP incubation did not reduce the sulfonic group content. However, it decreased the phenolic and methoxyl group contents. As the phenolic group content decreased, M w increased as a power function. The polymerization was proposed to involve the random coupling of phenoxy radical intermediates. The radicals coupled with each other to form different inter-unit linkages, most of which were the β-O-4’ type, as the 1H-NMR spectra indicated. Moreover, the HRP/H2O2 incubation induced a significant improvement in the adsorption and dispersion properties of LSs. Therefore, the HRP/H2O2 incubation is a promising approach for industrial applications of LSs.  相似文献   

11.
A faecal soluble lignin fraction (FSL) extracted with 90% dioxane from the faeces of sheep fed on alfalfa hay was characterized by chemical analysis, nitrobenzene oxidation, fourier transform infrared spectroscopy and gel permeation chromatography, and compared with milled wood lignin (MWL) isolated from the alfalfa hay. The amount of FSL in the faeces was low, accounting for only 1% of the lignin present in the alfalfa hay. FSL and MWL consisted mostly of lignin components and contained a small amount of carbohydrate. FSL had a much higher proportion of syringylpropane units than MWL and showed a wide molecular size distribution. The results indicate the selective and limited solubilization of syringyl-rich lignin from alfalfa by sheep digestion.  相似文献   

12.
Lichens produce various oxidoreductases including heme-containing peroxidases and the copper-containing phenol oxidases tyrosinase and laccase. Our earlier findings suggested that significant oxidoreductase activity occurs mainly in lichens from the order Peltigerales. Here we show that the non-Peltigeralean lichen Usnea can display significant activities of peroxidases and laccases. Strong evidence for the involvement of peroxidases and laccases in saprotrophic activities comes from the observation that their activities are induced by “starvation” due to prolonged dark storage, and also by treatment with soluble cellulose and lignin breakdown products. We also show that, given a quinone and chelated Fe, Usnea can produce hydroxyl radicals; these radicals contribute to the break down of carbohydrates or lignin. However, hydroxyl radical production is independent of laccase and peroxidase activity. Laccases and peroxidases are involved in other aspects of lichen biology; here we show that peroxidases, but not laccases, can break down lichen substances. Reduction in the amounts of lichen substances will reduce photoprotection, which will increase the photosynthetic capacity of thalli during winter when light intensities are low.  相似文献   

13.
《Process Biochemistry》2014,49(12):2191-2198
Laccase and peroxidases mainly cause polymerization of lignin in vitro due to the random coupling of the phenoxy radicals or quinoid intermediates. White rot fungi may avoid polymerization in vivo by reduction of these intermediates. Pyranose oxidase is suggested to play such a role based on its quinone-reducing activity, but direct evidence has been lacking. In this study, a pyranose oxidase was purified from the white rot fungus Irpex lacteus and partially characterized. The enzyme is composed of four subunits of 71 kDa as determined by SDS-PAGE. It exhibits maximum activity at pH 6.5 and 55 °C and is rather stable. d-glucose is the preferred substrate, but d-galactose, l-sorbose and d-xylose are also readily oxidized. In addition to O2, the enzyme can also transfer electrons to various quinones and the ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] cation radical. Laccase-generated quinoids are also reduced by the enzyme. Four different technical lignins were treated with laccase with and without pyranose oxidase. Subsequent gel permeation chromatography analysis demonstrated that the pyranose oxidase efficiently inhibited the polymerization of lignin caused by laccase and even brought about degradation.  相似文献   

14.
Some ionic liquids are able to dissolve wood, including lignin and lignocellulose, and thus they provide an efficient reaction media for modification of globally abundant wood-based polymers. Lignin can be modified with laccases (EC 1.10.3.2), multicopper oxidases, which selectively catalyze the oxidation of phenolic hydroxyl to the phenoxy radical in lignin by using oxygen as the co-substrate and an electron acceptor. Many enzymes, including laccases, retain their catalytic activity in the presence of ionic liquids. However, the enzyme activity is usually decreased in the presence of ionic liquids, and the most deactivating ionic liquids have been observed to be those dissolving wood most efficiently. In the present study the activity, pH optimum and catalyzed oxidation of coniferyl alcohol by the laccase from the ascomycete Melanocarpus albomyces was investigated in the ionic liquid 1-allyl-3-methyl-imidazolium chloride ([Amim]Cl), known to dissolve wood and expected to affect the laccase activity. Indeed, with an increasing concentration of [Amim]Cl, the activity of M. albomyces laccase decreased, and the pH range of the enzyme activity was narrowed. The pH optimum, using 2,6-dimethoxyphenol as the substrate, was shifted from 6.5 to 6.0 when the amount of [Amim]Cl was increased to 60% (m-%). It was also found that the inhibition of laccase with NaN3 was not as severe in the ionic liquid as in water. The insoluble fraction of the dehydropolymer (DHP) formed in the presence of [Amim]Cl had clearly higher molecular weight compared to the one formed in water. DHPs formed in the absence and presence of [Amim]Cl both contained β-5, ββ, β-O-4, α-CO/β-O-4 and α-O-4/β-O-4 structures. However, in the presence of [Amim]Cl, less β-O-4, slightly less β-5 and more ββ structures were formed.  相似文献   

15.
The effect of different ions which are constituents of technical lignin sulfonates (LS) on chemo-enzymatic graft co-polymerization was determined. The application of the iron chelator desferrioxamine in the initial reaction mixture revealed that iron impurities of LS which catalyzed a Fenton-like reaction were crucial for the initiation of grafting, whereas calcium or chloride ions showed no such effect. The addition of laccase (ATCC 11235) to the reaction mixture which contained desferrioxamine caused a significantly higher yield compared to the control; this indicates a crucial effect of laccase with regard to the initiation of copolymerization. The involvement of laccase in the initiation of the graft copolymerization was additionally confirmed by the application of low molecular weight phenolics instead of LS. In the presence of the lignin-like substrates, 3,4-dihydroxybenzoic acid and guaiacol, the rate of the decomposition of t-butylhydroperoxide was significantly enhanced by laccase. It can be assumed that the enzymatically generated phenoxy radicals mediate the production of oxygen centered radicals (alkoxy or peroxy) which initiate grafting.  相似文献   

16.
AimsTo clarify the mechanism of the protective effect of non-steroidal anti-inflammatory drugs (NSAIDs) on Alzheimer's disease, inactivation of cholinesterase (ChE) induced by NSAIDs was examined.Main methodsEquine ChE and rat brain homogenate were incubated with NSAIDs and horseradish peroxidase (HRP) and H2O2 (HRP–H2O2). ChE activity was measured by using 5,5'-dithiobis(nitrobenzoic acid). By using electron spin resonance, NSAID radicals induced by reaction with HRP–H2O2 were detected in the presence of spin trap agents.Key findingsEquine ChE was inactivated by mefenamic acid with HRP–H2O2. ChE activity in rat brain homogenate decreased dependent on the concentration of mefenamic acid in the presence of HRP–H2O2. NSAIDs diclofenac, indomethacin, phenylbutazone, piroxicam and salicylic acid inactivated ChE. Oxygen radical scavengers did not prevent inactivation of ChE induced by mefenamic acid with HRP–H2O2. However, spin trap agents 5,5-dimethyl-1-pyrroline-l-oxide and N-methyl-nitrosopropane, reduced glutathione and ascorbic acid strongly inhibited inactivation of ChE, indicating participation of mefenamic acid radicals. Fluorescent emission of ChE peaked at 400 nm, and the Vmax value of ChE changed during interaction of mefenamic acid with HRP–H2O2, indicating that ChE may be inactivated through modification of tyrosine residues by mefenamic radicals.SignificanceThe protective effect of NSAIDs on Alzheimer's disease seems to occur through inactivation of ChE induced by NSAIDs radicals.  相似文献   

17.
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten‐week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cβ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four‐day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl‐C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cβ to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cβ mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cβ‐ and methoxyl‐labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin‐degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.  相似文献   

18.
 An extracellular laccase capable of oxidizing ABTS (the diammonium salt of 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) was detected in ligninolytic cultures of Penicillium chrysogenum. By contrast, no lignin peroxidase, manganese-dependent peroxidase or aryl-alcohol oxidase was detected at any time during culturing. Both ABTS laccase activity and mineralization of dehydrogenative polymerizate of coniferyl alcohol were regulated by the C/N ratio in the medium and partially inhibited in the presence of thioglycolic acid, suggesting that both events are associated. In the presence of several known laccase inducers neither ABTS laccase activity nor mineralization rates were enhanced. However, a new laccase was detected in P. chrysogenum, able to oxidize 2,6-dimethoxyphenol but not involved in lignin mineralization. Studies with the known ligninolytic basidiomycete Trametes villosa suggest that lignin degradation by this fungus also involves the action of laccase. Received: 6 July 1995/Received revision: 28 October 1995/Accepted: 6 November 1995  相似文献   

19.
Abstract: In this review properties of cellobiose:quinone oxidoreductase (CBQ) and cellobiose oxidase (CbO) are presented and their possible involvement in lignin and cellulose degradation is discussed. Although these enzymes are produced by many different fungi, their importance for wood-degrading fungi is the topic here. CBQ is a FAD enzyme, while CbO also contains a heine group of the cytochrome b type. Protease activity is reported to convert CbO to CBQ. During oxidation of cellobiose (emanating from cellulose) to cellobiono-l,5-lactone, both enzymes reduce quinones produced by laccase and peroxidase during lignin degradation to the corresponding phenols. Many phenoxy and cation radicals are also reduced. Quinone reduction is more rapid than oxygen reduction, although oxygen is slowly reduced to superoxide and/or hydrogen peroxide. Thus, a more appropriate name for CbO is cellobiose dehydrogenase. CbO also reduces Fe(III) and together with hydrogen peroxide produced by the enzyme Fenton's reagent may be formed, resulting in hydroxyl radical production. This radical can degrade both lignin and cellulose, possibly indicating that cellobiose oxidase has a central role in degradation of wood by wood-degrading fungi.  相似文献   

20.
Gelatine gels originate from water in oil microemulsions in which the ternary system consists of isooctane/ sulfosuccinic acid bis [2-ethyl hexyl] ester/water; the solubilization of gelatin in the water pool of these microemulsions transforms them into viscous gels in which it is possible to cosolubilize various reactive molecules. These gels were used to immobilize two phenoloxidases, a laccase from Trametes versicolor and a tyrosinase from mushroom. The best balance between gel retention and catalytic activity was reached at a gelatine concentration of 2.5% (w/v) in the case of tyrosinase, while laccase immobilization was independent of gelatine concentration. Both enzymes kept the same optimum pH as the corresponding soluble controls, while a partial loss of activity was observed when they were immobilized. Immobilized enzymes showed an increased stability when incubated for several days at 4 degrees C with a very low release from the gels in the incubation solutions. The immobilization of tyrosinase and of laccase enhanced stability to thermal inactivation. Furthermore, gel-entrapped tyrosinase was almost completely preserved from proteolysis: more than 80% of the activity was maintained, while only 25% of the soluble control activity was detected after the same proteolytic treatments. A column packed with gel-immobilized tyrosinase was used to demonstrate that enzymes immobilized with this technique may be reused several times in the same reaction without loosing their efficiency. Finally, gel-entrapped tyrosinase and laccase were capable of removing naturally occurring and xeno-biotic aromatic compounds from aqueous suspensions with different degrees of efficiency. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号