首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Proglycogen: a low-molecular-weight form of muscle glycogen.   总被引:8,自引:0,他引:8  
We recently reported that muscle contains a trichloroacetic acid-precipitable component having Mr approx. 400 kDa that can be glucosylated by an endogenous enzyme acting on UDPglucose. This component contains within itself the autocatalytic, self-glucosylating protein glycogenin, the primer for glycogen synthesis. We now report that this substance, to which we give the name proglycogen, is a glycogen-like molecule constituting about 15% of total glycogen. It acts as a very efficient acceptor of glucose residues added from UDPglucose. Further, that the endogenous enzyme that adds the glucose to proglycogen is not the autocatalytic protein but a glycogen synthase-like enzyme. Proglycogen may be an intermediate in the synthesis and degradation of macromolecular glycogen and may exist and be metabolized as a separate entity. Consideration should now be given to the revival of the concept that tissue contains two forms of glycogen. One is proglycogen. The other is the 'classical', macromolecular glycogen. Additionally, proglycogen and glycogen may be glucosylated by different forms of synthase.  相似文献   

2.
The de novo biosynthesis of glycogen is catalyzed by glycogenin, a self-glucosylating protein primer. To date, the role of glycogenin in regulating glycogen metabolism and the attainment of maximal glycogen levels in skeletal muscle are unknown. We measured glycogenin activity after enzymatic removal of glucose by alpha-amylase, an indirect measure of glycogenin amount. Seven male subjects performed an exercise and dietary protocol that resulted in one high-carbohydrate leg (HL) and one low-carbohydrate leg (LL) before testing. Resting muscle biopsies were obtained and analyzed for total glycogen, proglycogen (PG), macroglycogen (MG), and glycogenin activity. Results showed differences (P < 0.05) between HL and LL for total glycogen (438.0 +/- 69.5 vs. 305.7 +/- 57.4 mmol glucosyl units/kg dry wt) and PG (311.4 +/- 38.1 vs. 227.3 +/- 33.1 mmol glucosyl units/kg dry wt). A positive correlation between total muscle glycogen content and glycogenin activity (r = 0.84, P < 0.001) was observed. Similar positive correlations (P < 0.05) were also evident between both PG and MG concentration and glycogenin activity (PG, r = 0.82; MG, r = 0.84). It can be concluded that glycogenin does display activity in human skeletal muscle and is proportional to glycogen concentration. Thus it must be considered as a potential regulator of glycogen synthesis in human skeletal muscle.  相似文献   

3.
Glycogenin is the self-glycosylating protein primer that initiates glycogen granule formation. To examine the role of this protein during glycogen resynthesis, eight male subjects exercised to exhaustion on a cycle ergometer at 75% Vo2 max followed by five 30-s sprints at maximal capacity to further deplete glycogen stores. During recovery, carbohydrate (75 g/h) was supplied to promote rapid glycogen repletion, and muscle biopsies were obtained from the vastus lateralis at 0, 30, 120, and 300 min postexercise. At time 0, no free (deglycosylated) glycogenin was detected in muscle, indicating that all glycogenin was complexed to carbohydrate. Glycogenin activity, a measure of the glycosylating ability of the protein, increased at 30 min and remained elevated for the remainder of the study. Quantitative RT-PCR showed elevated glycogenin mRNA at 120 min followed by increases in protein levels at 300 min. Glycogenin specific activity (glycogenin activity/relative protein content) was also elevated at 120 min. Proglycogen increased at all time points, with the highest rate of resynthesis occurring between 0 and 30 min. In comparison, macroglycogen levels did not significantly increase until 300 min postexercise. Together, these results show that, during recovery from prolonged exhaustive exercise, glycogenin mRNA and protein content and activity increase in muscle. This may facilitate rapid glycogen resynthesis by providing the glycogenin backbone of proglycogen, the major component of glycogen synthesized in early recovery.  相似文献   

4.
We examined whether the protein level and/or activity of glycogenin, the protein core upon which glycogen is synthesized, is limiting for maximal attainable glycogen levels in rat skeletal muscle. Glycogenin activity was 27.5 +/- 1.4, 34.7 +/- 1.7, and 39.7 +/- 1.3 mU/mg protein in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. A similar fiber type dependency of glycogenin protein levels was seen. Neither glycogenin protein level nor the activity of glycogenin correlated with previously determined maximal attainable glycogen levels, which were 69.3 +/- 5.8, 137.4 +/- 10.1, and 80.0 +/- 5.4 micromol/g wet wt in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. In additional experiments, rats were exercise trained by swimming, which resulted in a significant increase in the maximal attainable glycogen levels in soleus muscles ( approximately 25%). This increase in maximal glycogen levels was not accompanied by an increase in glycogenin protein level or activity. Furthermore, even in the presence of very high glycogen levels ( approximately 170 micromol/g wet wt), approximately 30% of the total glycogen pool continued to be present as unsaturated glycogen molecules (proglycogen). Therefore, it is concluded that glycogenin plays no limiting role for maximal attainable glycogen levels in rat skeletal muscle.  相似文献   

5.
Glycogenolysis results in the selective catabolism of individual glycogen granules by glycogen phosphorylase. However, once the carbohydrate portion of the granule is metabolized, the fate of glycogenin, the protein primer of granule formation, is not known. To examine this, male subjects (n = 6) exercised to volitional exhaustion (Exh) on a cycle ergometer at 75% maximal O2 uptake. Muscle biopsies were obtained at rest, 30 min, and Exh (99 +/- 10 min). At rest, total glycogen concentration was 497 +/- 41 and declined to 378 +/- 51 mmol glucosyl units/kg dry wt following 30 min of exercise (P < 0.05). There were no significant changes in proglycogen, macroglycogen, glycogenin activity, or mRNA in this period (P > or = 0.05). Exh resulted in decreases in total glycogen, proglycogen, and macroglycogen as well as glycogenin activity (P < 0.05). These decrements were associated with a 1.9 +/- 0.4-fold increase in glycogenin mRNA over resting values (P < 0.05). Glycogenolysis in the initial exercise period (0-30 min) was not adequate to induce changes in glycogenin; however, later in exercise when concentration and granule number decreased further, decrements in glycogenin activity and increases in glycogenin mRNA were demonstrated. Results show that glycogenin becomes inactivated with glycogen catabolism and that this event coincides with an increase in glycogenin gene expression as exercise and glycogenolysis progress.  相似文献   

6.
The discovery of glycogenin and the priming mechanism for glycogen biogenesis   总被引:11,自引:0,他引:11  
The biogenesis of glycogen in skeletal muscle requires a priming mechanism that has recently been elucidated. The first step is catalysed by a protein tyrosine glucosyltransferase and involves the formation of a novel glycosidic linkage, namely the covalent attachment of glucose to a single tyrosine residue (Tyr194) on a priming protein, termed glycogenin. The next stage is the extension of the glucan chain from Tyr194 and involves the sequential addition of up to seven further glucosyl residues. This reaction is brought about autocatalytically by glycogenin itself, which is a Mn2+/Mg(2+)-dependent UDP-Glc-requiring glucosyltransferase. The glucan primer is elongated by glycogen synthase, but only when glycogenin and glycogen synthase are complexed together. Glycogen synthase dissociates from glycogenin during the synthesis of a glycogen molecule, enabling glycogen molecules to reach their maximum theoretical size. Each mature glycogen beta particle in muscle contains one molecule of glycogenin attached covalently, and an average one glycogen synthase catalytic subunit bound non-covalently. As evidence accumulates that a priming protein may be a fundamental property of polysaccharide synthesis in general, the molecular details of mammalian glycogen biogenesis may serve as a useful model for other systems.  相似文献   

7.
Electro-stimulation alters muscle metabolism and the extent of this change depends on application intensity and duration. The effect of 14 days of chronic electro-stimulation on glycogen turnover and on the regulation of glycogen synthase in fast-twitch muscle was studied. The results showed that macro- and proglycogen degrade simultaneously during the first hour of stimulation. After 3 h, the muscle showed net synthesis, with an increase in the proglycogen fraction. The glycogen content peaked after 4 days of stimulation, macroglycogen being the predominant fraction at that time.Glycogen synthase was determined during electro-stimulation. The activity of this enzyme was measured at low UDPG concentration with either high or low Glu-6-P content. Western blots were performed against glycogen synthase over a range of stimulation periods. Activation of this enzyme was maximum before the net synthesis of glycogen, partial during net synthesis, and low during late synthesis. These observations suggest that the more active, dephosphorylated and very low phosphorylated forms of glycogen synthase may participate in the first steps of glycogen resynthesis before net synthesis is observed, while partially phosphorylated forms are most active during glycogen elongation.  相似文献   

8.
In this paper we elucidate part of the mechanism of the early stages of the biosynthesis of glycogen. This macromolecule is constructed by covalent apposition of glucose units to a protein, glycogenin, which remains covalently attached to the mature glycogen molecule. We have now isolated, in a 3500-fold purification, a protein from rabbit muscle that has the same Mr as glycogenin, is immunologically similar, and proves to be a self-glucosylating protein (SGP). When incubated with UDP-[14C]glucose, an average of one molecular proportion of glucose is incorporated into the protein, which we conclude is the same as glycogenin isolated from native glycogen. The native SGP appears to exist as a high-molecular-weight species that contains many identical subunits. Because the glucose that is self-incorporated can be released almost completely from the acceptor by glycogenolytic enzymes, the indication is that it was added to a preformed chain or chains of 1,4-linked alpha-glucose residues. This implies that SGP already carries an existing maltosaccharide chain or chains to which the glucose is added, rather than glucose being added directly to protein. The putative role of SGP in glycogen synthesis is confirmed by the fact that glucosylated SGP acts as a primer for glycogen synthase and branching enzyme to form high-molecular-weight material. SGP itself is completely free from glycogen synthase. The quantity of SGP in muscle is calculated to be about one-half the amount of glycogenin bound in glycogen.  相似文献   

9.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   

10.
Structural and functional studies on rabbit liver glycogenin   总被引:4,自引:0,他引:4  
Glycogenin, the protein primer required for the biogenesis of muscle glycogen, has been isolated from rabbit liver glycogen. The protein comprised 0.0025% of liver glycogen by mass, 200-fold lower than the glycogenin content of muscle glycogen. Structural analyses, including determination of the amino acid sequence surrounding the glucosylated-tyrosine residue, showed identity with muscle glycogenin. Catalytically active liver glycogenin was partially purified and, like the skeletal muscle protein, catalysed an intramolecular, Mn2+- and UDP-Glc-dependent autoglucosylation reaction, forming a primer on which glycogen synthase could act. The results demonstrate that hepatic and muscle glycogenins are almost certainly identical proteins and that liver and skeletal muscle share a common mechanism for the biogenesis of glycogen molecules. The results also indicate that there is about one glycogenin molecule/liver glycogen alpha particle.  相似文献   

11.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   

12.
Cross-sections of muscle, intestine, and genital tract fluoresced in defined locations when live Ascaris suum adults were incubated in medium containing chymotrypsin liganded with fluorescein-5-isothiocyanate. This suggests that the protease, or portions of it, are assimilated by A. suum. A. suum chymotrypsin/elastase isoinhibitors were found in muscle sarcolemma, eggs, sperm, and intestine, and host chymotrypsin was localized in the same regions of these tissues by immunofluorescence and immunoperoxidase techniques. These experiments demonstrate that host chymotrypsin enters the parasite, that it is present in specific regions of Ascaris, and that it probably exists as an enzyme-inhibitor complex.  相似文献   

13.
Glycogenin, a Mn2+-dependent, self-glucosylating protein, is considered to catalyze the initial glucosyl transfer steps in glycogen biogenesis. To study the physiologic significance of this enzyme, measurements of glycogenin mediated glucose transfer to endogenous trichloroacetic acid precipitable material (protein-bound glycogen, i.e., glycoproteins) in human skeletal muscle were attempted. Although glycogenin protein was detected in muscle extracts, activity was not, even after exercise that resulted in marked glycogen depletion. Instead, a MnSO4-dependent glucose transfer to glycoproteins, inhibited by glycogen and UDP-pyridoxal (which do not affect glycogenin), and unaffected by CDP (a potent inhibitor of glycogenin), was consistently detected. MnSO4-dependent activity increased in concert with glycogen synthase fractional activity after prolonged exercise, and the MnSO4-dependent enzyme stimulated glucosylation of glycoproteins with molecular masses lower than those glucosylated by glucose 6-P-dependent glycogen synthase. Addition of purified glucose 6-P-dependent glycogen synthase to the muscle extract did not affect MnSO4-dependent glucose transfer, whereas glycogen synthase antibody completely abolished MnSO4-dependent activity. It is concluded that: (1) MnSO4-dependent glucose transfer to glycoproteins is catalyzed by a nonglucose 6-P-dependent form of glycogen synthase; (2) MnSO4-dependent glycogen synthase has a greater affinity for low molecular mass glycoproteins and may thus play a more important role than glucose 6-P-dependent glycogen synthase in the initial stages of glycogen biogenesis; and (3) glycogenin is generally inactive in human muscle in vivo.  相似文献   

14.
Glycogen synthase has been purified from the obliquely striated muscle of the swine parasite Ascaris suum. The muscle contains a concentration of glycogen synthase and glycogen which is 20-fold and 15-fold, respectively, greater than rabbit skeletal muscle. The enzyme could not be solubilized with salivary amylase, but partial solubilization was achieved by activation of endogenous phosphorylase. The enzyme was purified to 85-90% homogeneity (specific activity = 4.3 units/mg) by DEAE-cellulose, Sepharose 4B, and glucosamine 6-phosphate chromatography. The purified glycogen synthase was substantially similar to rabbit skeletal muscle enzyme with respect to Mr (gel electrophoresis and gel filtration), pH dependence, aggregation properties, temperature dependence, and kinetic constants for substrates and activators. Glycogen synthase I was converted to glycogen synthase D by the cyclic AMP-dependent protein kinase. The cyclic AMP-dependent protein kinase catalyzed the incorporation of 1.3 mol of phosphate into each glycogen synthase I subunit and the concomitant interconversion to glycogen synthase D. Since glycogen is the sole fuel utilized by this organism during nonfeeding periods of the host, the characterization of this enzyme provides further insight into the regulatory mechanisms which determine glycogen turnover.  相似文献   

15.
Glycogenin is the covalently bound protein found in muscle glycogen that is thought to be the primer for glycogen synthesis. We now report that glycogenin contains a phosphoserine residue. From a less than stoichiometric amount of phosphate in glycogenin as isolated, the content may be increased to one molecular proportion, using the catalytic subunit of cAMP-dependent protein kinase. The phosphoserine residue is present within a hitherto-undescribed amino acid sequence. In particular, the serine is not flanked by arginine, previously thought to be an essential adjunct for a serine residue to act as substrate for this kinase. We suggest that the serine phosphate may represent a means of regulating the ability of glycogenin to prime glycogen synthesis.  相似文献   

16.
The initiation of glycogen synthesis   总被引:6,自引:0,他引:6  
The claim that glycogen contains protein was first made exactly 100 years ago and has been the subject of contention ever since. It has now been established that rabbit-muscle glycogen contains a covalently bound protein of Mr 37,000, present in equimolar proportion to glycogen. The protein, named glycogenin, is joined to muscle glycogen via a novel linkage involving the hydroxyl group of tyrosine, a fact of possible significance in the light of insulin's message being transmitted by tyrosine phosphorylation. The protein is seen as the biogenetic precursor of glycogen. Its existence suggests an additional mode of regulation of glycogen metabolism since the amount, turnover and cellular location of glycogenin will influence the corresponding parameters for glycogen. A protein “primer” is suggested for the biogenesis of storage polysaccharides in general.  相似文献   

17.
The glucosylation site on glycogenin, the protein primer required for de novo glycogen synthesis, has been identified. The glucose is attached at position C1 in a glycosidic linkage with a unique tyrosine, and the sequence surrounding this residue was found to be: His-Leu-Pro-Phe-Ile-Tyr-Asn-Leu-Ser-Ser-Ile-Ser-Ile-Tyr(Glc)-Ser-Tyr-Leu -Pro- Ala-Phe-Lys. The same tyrosine residue is glycosylated whether glycogenin is isolated as a complex with the catalytic subunit of glycogen synthase, or covalently attached to glycogen. The possibility that insulin and growth factors may enhance glycogen synthesis via stimulation of the priming reaction is discussed.  相似文献   

18.
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.  相似文献   

19.
A glycogen synthase, designated GS II, which occurs in a protein/carbohydrate complex has been purified from Ascaris suum muscle. The purified GS-II complex which is eluted from concanavalin-A--Sepharose contains proteins with Mr 140,000 and 66,000 and a glycoprotein with a carbohydrate/protein mass ratio of 3:1. GS II activity was totally dependent on glucose 6-phosphate, but exogenous glycogen was not required for polysaccharide synthesis. The GS-II complex was not phosphorylated by cyclic-AMP-dependent protein kinase, and antibodies to the protein and carbohydrate components of GS II did not cross react with the purified cyclic-AMP-regulated glycogen synthase (GS I) from A. suum muscle. Polysaccharide which was synthesized de novo by the complex was added to the large-molecular-mass glycoprotein in GS II. The glycogen-like character of the newly synthesized polysaccharide was confirmed by the observation that glycogen phosphorylase utilized the polymer as substrate in both the synthesis and degradation reactions. A model is discussed in which a core glycoprotein serves as the substrate for a glycogen synthase which is distinctly different from GS I.  相似文献   

20.
Triglyceride utilization is correlated with glycogen resynthesis in developing Ascaris suum larvae. Glycogen content, determined by amyloglucosidase hydrolysis at 2-day intervals, decreases sharply during embryonation from 15% (per mg dry weight) at day 4 to 2% at day 12. Thereafter glycogen increases 3-fold through day 20, marking the resynthesis period. Triglyceride lipid droplets are confirmed primarily to the posterior half of the larvae and mark the site of the interconversion. Although they serve as precursors to glycogen, only a small diminution was observed ultrastructurally. Glycogen accumulation, on the other hand, correlates well with increases determined biochemically. alpha-glycogen builds up among lipid droplets, while beta-glycogen concentrates in the cytoplasm of somatic muscle cells paralleling myofibril development. Dense granules, restricted to the lipid body region, are considered as the possible subcellular site for the enzymatic conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号