首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
SHP-1, an SH2 domain-containing tyrosine phosphatase, has a crucial role in hematopoiesis. Here we report that SHP-1 is associated with two major tyrosine-phosphorylated proteins in hematopoietic cells treated with the tyrosine phosphatase inhibitor, pervanadate. One of the proteins corresponds to leukocyte-associated Ig-like receptor-1 (LAIR-1), a recently cloned transmembrane protein. Molecular cloning revealed four isoforms of the protein. LAIR-1 is hyper-phosphorylated on tyrosyl residues in cells overexpressing a catalytically inactive mutant form of SHP-1 as well as in pervanadate-treated cells. An antibody against the extracellular domain of the protein also induced its tyrosine phosphorylation. Tyrosine-phosphorylated LAIR-1 specifically interacts with SHP-1 but not with SHP-2, a structurally related tyrosine phosphatase. Using site-specific mutagenesis, we demonstrated that Tyr(233) and Tyr(263), each embedded in an immunoreceptor tyrosine-based inhibitory motif, are responsible for tyrosine phosphorylation of LAIR-1 and recruitment of SHP-1. Both tyrosyl residues are required for SHP-1 binding. Protein kinases responsible for tyrosine phosphorylation of LAIR-1 may belong to the Src family since PP1, a Src family kinase inhibitor, significantly inhibited its phosphorylation. As a major binding protein of SHP-1 on the plasma membrane, LAIR-1 may play an important role in hematopoietic cell signaling.  相似文献   

2.
The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells   总被引:2,自引:0,他引:2  
The mouse NKR-P1 family includes at least three genes: NKR-P1A, -B, -C. Neither surface expression nor function of the NKR-P1B gene product has previously been shown. Here, we demonstrate that the SJL/J allele of the NKR-P1B gene product is expressed on SJL/J NK cells, and is recognized by PK136 mAb. Interestingly, the same mAb does not recognize the NKR-P1B gene product of C57BL/6. We have also generated a novel mAb, 1C10, that recognizes an activation receptor on SJL/J NK cells. Activation of the NKR-P1B receptor-inhibited 1C10 mAb induced redirected lysis and recruited SHP-1, indicating that NKR-P1B is an inhibitory receptor. Therefore, the mouse NKR-P1 gene family, like the Ly49 family, includes both activation and inhibitory receptors.  相似文献   

3.
A monoclonal antibody, 9.1C3, was used to investigate the mechanism of natural killer (NK) cell-mediated lysis. In addition to blocking NK cell function, the antibody blocked antibody-dependent cellular cytotoxicity against the K562 target cell at the effector cell level. The stage at which 9.1C3 antibody inhibited cytolysis was established with a Ca++ pulse technique, whereby it was shown that the antibody inhibited killing at a discrete step after the Ca++-dependent programming for lysis. The 9.1C3 antigen appeared to be associated with the T200 glycoprotein complex. Thus the 66 and 77 Kd proteins detected by 9.1C3 were also precipitated with a monoclonal antibody to T200, and in sequential immunoprecipitations, 9.1C3 antibody removed these bands from immunoprecipitates with antibody to T200. Also, in co-modulation studies, it was found that antibody to T200 co-capped the 9.1C3 antigen but that capping with 9.1C3 antibody did not induce co-modulation of the T200 antigen. Expression of the 9.1C3 and T200 antigens on different cell types, however, was not identical, and the 9.1C3 antibody did not immunoprecipitate high m.w. proteins in the region of 200 Kd. Functionally, in NK cell killing studies, the antibody to T200 used alone did not block but was synergistic with the 9.1C3 antibody. The differential effect of the enzymes pronase and trypsin on the cell surface expression of the 9.1C3 and T200 antigens reflected the ability of these enzymes to inhibit NK cell killing. These data suggest that the 9.1C3 antigen participates in a late event in the cytolytic pathway.  相似文献   

4.
The 50 KD sheep red blood cell antigen receptor CD2 is the earliest T cell differentiation marker and is present on all blood-derived T cells, including natural killer (NK) cells. The CD2 antigen is also known to serve as an important activation site regulating various T cell functions. We report that anti-CD2 monoclonal antibodies (MAb) block MHC-restricted class I- and class II-specific cytolysis by CD2+, CD3+ clones of the relevant target cells, irrespective of whether lysis by these clones is blocked by anti-CD3 or anti-CD8 MAb. Moreover, anti-CD2 MAb (but not anti-CD3 MAb) are able to reduce MHC-nonrestricted, nonspecific cytolysis: a) by CD2+, CD3+ clones of K562 target cells; and b) by CD2+, CD3 NK clones of K562 as well as Daudi cells. Different preparations of anti-CD2 MAb vary in their capacity to inhibit cytolysis. For cloned effector cells, the percent inhibition of lysis by CLB-T11 greater than Lyt-3 MAb, whereas with "fresh" NK cells, the lysis inhibitory ability of Lyt-3 greater than CLB-T11. The antibody-dependent cellular cytotoxicity by "fresh" and cloned NK cells is not inhibited by anti-CD2 MAb. Anti-CD2 MAb also prevent the induction of lysis by cross-linked anti-CD3 MAb, e.g., by CD2+, CD3+ cloned cloned cells against (IgG-FcR+) Daudi cells. Anti-CD2 MAb can also induce cytolysis in some, but not all, CD2+, CD3- NK clones against xenogeneic P815 mouse mastocytoma cells. Anti-CD2 MAb, in combination with lectins (PHA or Con A: pretreatment of effector cells), can also induce cytolytic activity by CD2+, CD3+ clones against Daudi cells. Our data therefore support the concept that the CD2 antigen is an important activation site regulating a wide variety of T cell functions including cytolysis. Whether ligand interaction with the CD2 antigens results in augmentation or inhibition of T cell functions may very well depend on the type of CD2 antigen-ligand interaction, e.g., cross-linked ligand-receptor interaction may, in general, enhance the various T cell functions, whereas noncross-linked ligand-receptor interactions may inhibit such functions, as we and other investigators demonstrated earlier for the CD3/Ti antigen-receptor complex activation site.  相似文献   

5.
A panel of five monoclonal antibodies detecting human lymphocyte function-associated antigen 1 (LFA-1) was generated and shown by competitive binding studies to react with at least four distinct epitopes on this molecule. The antibodies were then tested for their ability to inhibit the lytic activity of a variety of different human natural killer (NK) populations on a panel of four NK-susceptible target cells (K562, MOLT-4, HSB-2, and Jurkat). When heterogeneous NK populations derived from fresh peripheral blood and mixed-lymphocyte culture (MLC)-generated lines were used, these anti-LFA-1 monoclonal antibodies (MAbs) inhibited lysis of all four NK targets; this finding supports the notion that LFA-1 molecules play an important role in NK-mediated lysis. When tested on a cloned line of NK cells (NK 3.3), lysis of K562 was inhibited by these MAbs, but lysis of the other three targets was not affected. This represents an instance where a MAb specific for LFA-1 inhibits the lytic activity of NK cells against some but not all targets; thus the LFA-1 molecule cannot be considered under all circumstances to be an absolute requirement in NK-mediated lysis.  相似文献   

6.
We previously described a monoclonal antibody, 9.1C3, which blocked natural killer (NK) cell-mediated cytolysis by acting on effector cells during a late step in the lethal hit stage. The present work describes the production in rabbits of anti-idiotypic (anti-id) antibodies to the 9.1C3 antibody. In addition to reacting specifically with the 9.1C3 antibody, the anti-id antibodies bound strongly to the K562 target cell. The anti-id antibodies blocked killing of K562 targets by NK, antibody-dependent cellular cytotoxicity, and NK-like cells but did not inhibit killing by cytotoxic T lymphocytes (CTL). Pretreatment of cells and washing before assay indicated that blocking occurred at the target cell level. Of particular interest, single cell assays with Percoll-enriched large granular lymphocytes demonstrated that the antibodies caused no reduction in binding. These data are consistent with a model for NK cell-mediated lysis that involves a secondary target cell receptor independent of the primary NK-target cell interaction. The anti-id antibodies immunoprecipitated cell surface proteins of relative m.w. 79K and 62K unreduced, and 94K and 79K reduced from K562 target cells. The development of anti-id antibodies may be a useful procedure to explore the structure and function of cellular receptors involved in NK cell-mediated cytolysis.  相似文献   

7.
The intracellular Src homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP-1) is a negative regulator of cell signaling and contributes to the establishment of TCR signaling thresholds in both developing and mature T lymphocytes. Although there is much functional data implicating SHP-1 as a regulator of TCR signaling, the molecular basis for SHP-1 activation in T lymphocytes is poorly defined. A modification of the yeast two-hybrid system was employed to identify in T cells phosphotyrosine-containing proteins capable of binding the SH2 domains of SHP-1. From this yeast tri-hybrid screen, the p85beta subunit of phosphatidylinositol 3-kinase and the immunoreceptor tyrosine-based inhibitory motif-containing receptors, leukocyte-associated Ig-like receptor-1 (LAIR-1) and programmed death-1 (PD-1), were identified. Coimmunoprecipitation studies demonstrated that the exclusive phosphotyrosine-containing protein associated with SHP-1 in Jurkat T cells under physiological conditions is LAIR-1. Significantly, this interaction is constitutive and was detected only in the membrane-enriched fraction of cell lysates. Ligand engagement of the SH2 domains of SHP-1 is a prerequisite to activation of the enzyme, and, consistent with an association with LAIR-1, SHP-1 was found to be constitutively active in unstimulated Jurkat T cells. Importantly, a constitutive interaction between LAIR-1 and SHP-1 was also detected in human primary T cells. These results illustrate the sustained recruitment and activation of SHP-1 at the plasma membrane of resting human T cells by an inhibitory receptor. We propose that this mechanism may exert a constitutive negative regulatory role upon T cell signaling.  相似文献   

8.
S Mahmood  N Kanwar  J Tran  ML Zhang  SK Kung 《PloS one》2012,7(8):e44244
Balance of signals generated from the engaged activating and inhibitory surface receptors regulates mature NK cell activities. The inhibitory receptors signal through immunoreceptor tyrosine based inhibitory motifs (ITIM), and recruit phosphatases such as SHP-1 to inhibit NK cell activation. To directly examine the importance of SHP-1 in regulating activities and cell fate of mature NK cells, we used our established lentiviral-based engineering protocol to knock down the SHP-1 protein expression in primary C57BL/6NCrl cells. Gene silencing of the SHP-1 in primary NK cells abrogated the ability of ITIM-containing NK inhibitory receptors to suppress the activation signals induced by NK1.1 activating receptors. We followed the fates of stably transduced SHP-1 silenced primary NK cells over a longer period of time in IL-2 containing cultures. We observed an impaired IL-2 induced proliferation in the SHP-1 knockdown NK cells. More interestingly, these "de-regulated" SHP-1 knockdown NK cells mediated specific self-killing in a real-time live cell microscopic imaging system we developed to study NK cell cytotoxicity in vitro. Selective target recognition of the SHP-1 knockdown NK cells revealed also possible involvement of the SHP-1 phosphatase in regulating other NK functions in mature NK cells.  相似文献   

9.
In this study, we describe human FDF03, a novel member of the Ig superfamily expressed as a monomeric 44-kDa transmembrane glycoprotein and containing a single extracellular V-set Ig-like domain. Two potential secreted isoforms were also identified. The gene encoding FDF03 mapped to chromosome 7q22. FDF03 was mostly detected in hemopoietic tissues and was expressed by monocytes, macrophages, and granulocytes, but not by lymphocytes (B, T, and NK cells), indicating an expression restricted to cells of the myelomonocytic lineage. FDF03 was also strongly expressed by monocyte-derived dendritic cells (DC) and preferentially by CD14+/CD1a- DC derived from CD34+ progenitors. Moreover, flow cytometric analysis showed FDF03 expression by CD11c+ blood and tonsil DC, but not by CD11c- DC precursors. The FDF03 cytoplasmic tail contained two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. When overexpressed in pervanadate-treated U937 cells, FDF03 was tyrosine-phosphorylated and recruited Src homology-2 (SH2) domain-containing protein tyrosine phosphatase (SHP)-2 and to a lesser extent SHP-1. Like engagement of the ITIM-bearing receptor LAIR-1/p40, cross-linking of FDF03 inhibited calcium mobilization in response to CD32/FcgammaRII aggregation in transfected U937 cells, thus demonstrating that FDF03 can function as an inhibitory receptor. However, in contrast to LAIR-1/p40, cross-linking of FDF03 did not inhibit GM-CSF-induced monocyte differentiation into DC. Thus, FDF03 is a novel ITIM-bearing receptor selectively expressed by cells of myeloid origin, including DC, that may regulate functions other than that of the broadly distributed LAIR-1/p40 molecule.  相似文献   

10.
11.
Three cell surface antigens associated with the cytolytic T lymphocyte(CTL)-target cell interaction were identified by generation of monoclonal antibodies (MAb) against OKT4+, HLA-DR-specific CTL and selection for inhibition of cytolysis in a 51Cr-release assay. These MAb block cytolysis by both OKT4+ and OKT8+ CTL and the proliferative responses to PHA and the mixed lymphocyte response (MLR). LFA-1 is an antigen widely distributed on lymphoid tissues and is composed of two polypeptides of 177,000 and 95,000 Mr on all cell types studied. Anti-LFA-1 MAb block NK cell-mediated cytolysis in addition to T lymphocyte-mediated cytotoxicity and proliferation. LFA-2 (Mr = 55,000 to 47,000), a determinant on the sheep red blood cell receptor, is expressed by T cells but not B cells and appears specific for T cell functions. LFA-3 (Mr = 60,000) is a widely distributed antigen present on both hematopoietic and nonhematopoietic tissues and appears to only be involved in T cell functions. MAb to LFA-1 and LFA-2 inhibit function by binding to effector cell surface molecules, whereas anti-LFA-3 MAb appear to block by binding to the target cells. Together with previously described molecules, LFA-1, LFA-2, and LFA-3 demonstrate the complexity of CTL-mediated cytotoxicity at the molecular level.  相似文献   

12.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

13.
Mechanisms involved in the lysis of tumor cells by natural killer (NK) cells were investigated by using mutagenized K562 targets resistant to the effects of NK cells. K562 cells were treated with the mutagen methyl methanesulfonate (MMS) and, to select for resistant mutants, rabbit anti-idiotypic (anti-id) antibodies were used. This anti-id was raised to a monoclonal antibody 9.1C3 which itself blocked lysis by NK cells by binding to the effector cells; the anti-id inhibited killing by binding to the K562 targets, presumably to a cell surface protein relevant to a secondary event in the NK lytic pathway. MMS-derived mutants showed a heterogeneity of staining with the anti-id, allowing the antibody to be used with flow cytometry to select a population of K562 cells relatively negative in antigen expression. The degree of reactivity of K562 cultures with the anti-id antiserum and the resistance to lysis by NK cells were inversely related. Cultures of NK-resistant K562 cells with low expression of the anti-id structure were cloned by limiting dilution: 96 clones were analyzed and one subclone, C9/2, which was six-to sevenfold less sensitive to lysis than the parental K562 cell line, was used in further studies by cold target inhibition and single cell binding assays. The increased resistance to lysis of C9/2 was not due to a reduced expression of target recognition structures, and resistance could not be overcome by prolonging the time allowed for lysis to 18 hr nor by adding exogenous recombinant leukocyte interferon. Killing of the NK-resistant variant was inhibited by mannose-6-phosphate but not by the monoclonal antibody against which the anti-id antibody was raised. It is therefore suggested that the structure on the K562 cells recognized by the anti-id antibodies is a novel secondary receptor which is important in the later stages of the NK cell cytolytic cascade.  相似文献   

14.
It has recently been hypothesized that tumor cells with reduced levels of MHC class I antigens are more susceptible to NK-mediated lysis and are rejected by NK cells, whereas tumor cells with normal levels of class I are rejected by tumor-specific CTL. We have tested this hypothesis using a mouse hepatoma system. The Hepa-1 tumor is a spontaneous H-2Kb loss variant that arose from the BW7756 tumor, when BW7756 was adapted to growth in culture. Our studies have shown that despite the loss of H-2Kb antigen, Hepa-1 is not more susceptible to NK lysis than its H-2Kb-transfected variants. These studies also suggested that NK cells were not responsible for rejection of the Hepa-1 tumor. The Hepa-1 tumor, therefore, appears to contradict the hypothesized linkage of MHC levels and NK susceptibility. Because NK cells are not involved in immunity to this tumor, we have sought to identify the effector cell responsible for Hepa-1 rejection. Cytotoxic T lymphocyte assays demonstrate that in vitro, Hepa-1 cells are lysed by Hepa-1-specific H-2Db-restricted CD4-CD8+ T lymphocytes. Footpad assays demonstrate that in vivo, Hepa-1 rejection requires CD4+CD8- and CD4-CD8+ Hepa-1-primed splenocytes. These results indicate that immunity to Hepa-1 is T cell mediated. Hepa-1 is therefore an example of an unusual tumor in that down-regulation of MHC class I antigen expression is associated with increased CTL susceptibility.  相似文献   

15.
We have utilized several clonal cell lines, derived from the murine lymphoma ASL1w, to investigate the early events in NK-mediated lysis. The studies described here examine the relationship between NK recognition, NK cell:tumor cell conjugate formation, and NK-mediated lysis. The AW4F and AW4D tumor lines were susceptible to NK-mediated lysis and efficiently inhibited NK recognition in competitive inhibition assays, whereas the AW5J tumor, which is relatively resistant to NK-mediated lysis, did not. In contrast, the AW5E tumor was NK resistant but inhibited NK recognition almost as well as the NK-sensitive tumors, suggesting that it was deficient in a postbinding event required for NK-mediated lysis. These findings demonstrate a correlation, with one exception, between the susceptibility of the ASL1w-derived tumor lines to NK-mediated lysis and their ability to inhibit NK recognition. In contrast, there was no apparent correlation between tight conjugate formation, as assessed in three independent target binding assays, and the susceptibility of these tumors to NK-mediated lysis, showing that tight conjugate formation is not required for either efficient NK recognition or lysis.  相似文献   

16.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

17.
Interleukin-1 alpha (IL-1alpha) and beta (IL-1beta) are well known factors that stimulate hematopoiesis, nevertheless there are reports that show that they can also inhibit this activity. While both IL-1alpha and IL-1beta induce the expression of hematopoietic cytokines, such as growth factors and their receptors on myeloid cells, helping thus to regulate hematopoiesis, it is not known if their inhibitory activity is also mediated through the induction of other specific cytokines. In this work we show that recombinant human IL-1beta (rhIL-1beta) inhibits the proliferation of a mouse IL-3-dependent myeloid multipotent cell line (32D cl3), without inducing its differentiation. We show that rhIL-1beta induces in 32D cl3 cells the expression of the tumor necrosis factor alpha (TNF-alpha) gene, a well known growth inhibitor, and that the rhIL-1beta growth inhibition property on 32D cl3 cells is partially due to this secreted TNF-alpha, hinting thus that the inhibition of hematopoiesis by IL-1 is mediated through other induced cytokines.  相似文献   

18.
NK cell triggering by the human costimulatory molecules CD80 and CD86.   总被引:2,自引:0,他引:2  
NK cell-mediated effector functions are regulated by a delicate balance between positive and negative signals. Receptors transmitting negative signals upon engagement with target cell MHC class I molecules have been characterized in detail in recent years. In contrast, less information is available about receptor-ligand interactions involved in the transmission of positive or "triggering" signals to NK cells. Recently, it has been described that murine NK cells are triggered by the costimulatory molecules CD80, CD86, and CD40. Using NK cell lines derived from PBMC as effectors, we demonstrate that the human CD80 and CD86 gene products can function as triggering molecules for NK cell-mediated cytotoxicity. Expression of human CD80 or CD86 molecules in murine B16.F1 melanoma cells rendered these significantly more susceptible to lysis by human NK cell lines. Blocking of the transfected gene products with specific mAb reduced lysis levels to that of nontransfected control cell lines. Triggering of human NK cells by CD80 and CD86 appeared to be independent of CD28 and CTLA-4, at least as determined by the reagents used in the present study, because the expression of these molecules could not be detected on the NK cell lines by either flow cytometry or in redirected lysis assays. Thus, human NK cells may use receptors other than CD28 and CTLA-4 in their interactions with CD80 and CD86 molecules. Alternatively, interactions may involve variants of CD28 (and possibly CTLA-4) that are not recognized by certain anti-CD28 mAb.  相似文献   

19.
Leukocyte associated Ig-like receptor-1 (LAIR-1) is a surface molecule expressed on human mononuclear leukocytes that functions as an inhibitory receptor on human NK cells. In addition to NK cells, LAIR-1 is expressed on T cells, B cells, macrophages, and dendritic cells. Most cells express two biochemically distinct forms of LAIR-1, which we now show are likely alternative splice variants of the same gene. Cross-linking of LAIR-1 on human T cell clones results in inhibition of cytotoxicity only in T cell clones that lack CD28 and are able to spontaneously lyse certain targets in vitro. Moreover, the cytolytic activity of freshly isolated T cells, which is thought to be mainly due to "effector" T cells, can be inhibited by anti-LAIR-1 mAb. Thus, LAIR-1 functions as an inhibitory receptor not only on NK cells, but also on human T cells. This indicates that LAIR-1 provides a mechanism of regulation of effector T cells and may play a role in the inhibition of unwanted bystander responses mediated by Ag-specific T cells.  相似文献   

20.
The trophoblast, the outermost layer of the human placenta, lacks expression of the classical human leukocyte antigen (HLA) class I molecules. This prevents allorecognition by T cells but raises the question of what protects the trophoblast from natural killer (NK) cells. In a previous study, we have shown that choriocarcinoma cell (CC) resistance to NK lysis was mainly independent of HLA class I molecules. In the present study, we postulated that CC may prevent activation of NK cells by failing to stimulate their triggering receptors (TR). To test this hypothesis, we evaluated the lysis of JAR and JEG-3 CC after effective cross-linking and activation of NK cells by means of lectins or antibodies. Our results show that NK-resistant CC were sensitive to lysis by unstimulated peripheral blood lymphocytes in the presence of phytohemagglutin (PHA), to antibody-dependent cell cytotoxicity in presence of anti-Tja antibodies, and to monoclonal antibody redirected killing using anti-TR antibodies anti-CD16 and anti-CD244/2B4. Finally, CC fail to express CD48, the ligand for CD244/2B4. These results indicate that the resistance of CC to lysis results primarily from defective NK cell activation, at least partially due to the lack of expression of ligands, such as CD48, involved in the triggering of NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号