首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for these detergents [Lichtenberg, D., Robson, R.J., & Dennis, E.A.(1983) Biochim. Biophys. Acta 737, 285-304]. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At that point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations (from 0.25 to 20 mM phospholipid). The results allowed a quantitative determination of RSat, the effective detergent to lipid molar ratios in the saturated liposomes, which were 0.64, 1.3, and 0.30 for Triton X-100, octyl glucoside, and sodium cholate, respectively. The corresponding ratios in the mixed micelles, RSol, were 2.5, 3.8, and 0.9 mol of detergent/mol of phospholipid. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions (0.18, 17, and 2.8 mM, respectively). These transitions were also investigated by 31P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data (K = 3.5, 0.09, and 0.11 mM-1 for Triton X-100, octyl glucoside, and sodium cholate, respectively). It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.  相似文献   

2.
The effect of the surfactant, alpha-[4-(1,1,3,3-tetramethylbutyl) phenyl]-omega-hydroxypolyoxy-1,2-ethanediyl, on the adsolubilization of cholesterol and/or dotriacontane as model compounds of the epicuticular wax of mature tomato (Lycopersicon esculentum Mill.) fruit was investigated. Cholesterol as a model compound of such triterpenols as alpha- and beta-amyrins was solubilized in a concentration-dependent manner above the critical micelle concentration (cmc), while non-detectable quantities of the saturated hydrocarbon, dotriacontane, was solubilized at any concentration used. However, the surfactants solubilized more cholesterol from mixed than single membranes. The surfactants with a shorter polyoxyethylene (POE) chain length solubilized greater quantities than those with longer POE chains, suggesting that the microenvironment of micelles related to the polyoxyethylene moiety had an important effect on surfactant solubilization and that the octylphenol moiety must be capable of adsorbing to a specific region of the reconstituted membrane like dotriacontane.  相似文献   

3.
The solubilization of lipid bilayers by surfactants is accompanied by morphological changes of the bilayer and the emergence of mixed micelles. From a phase equilibrium perspective, the lipid/surfactant/water system is in a two-phase area during the solubilization: a phase containing mixed micelles is in equilibrium with bilayer structures of the lamellar phase. In some cases three phases are present, the single micelle phase replaced by a concentrated and a dilute solution phase. In the case of non-ionic surfactants, the lipid bilayers reach saturation when mixed micelles, often flexible rod-like or thread-like, start to form in the aqueous solution, at a constant chemical potential of the surfactant. The composition of the bilayers also remains fixed during the dissolution. The phase behavior encountered with many charged surfactants is different. The lamellar phase becomes destabilized at a certain content of surfactant in the membrane, and then disintegrates, forming mixed micelles, or a hexagonal phase, or an intermediate phase. Defective bilayer intermediates, such as perforated vesicles, have been found in several systems, mainly with charged surfactants. The perforated membranes, in some systems, go over into thread-like micelles via lace-like structures, often without a clear two-phase region. Intermediates in the form of disks, either micelles or bilayer fragments, have been observed in several cases. Most noteworthy are the planar and circular disks found in systems containing a large fraction of cholesterol in the bilayer. Bile salts are a special class of surfactants that seem to break down the bilayer at low additions. Originally, disk-like mixed micelles were conjectured, with polar membrane lipids building the disk, and the bile salts covering the hydrophobic rim. Later work has shown that flexible cylinders are the dominant intermediates also in these systems, even if the disk-like structures have been re-established as transients in the transformation from mixed micelles to vesicles.  相似文献   

4.
Reconstituted vesicular stomatitis virus envelopes or virosomes are formed by detergent removal from solubilized intact virus. We have monitored the solubilization process of the intact vesicular stomatitis virus by the nonionic surfactant octylglucoside at various initial virus concentrations by employing turbidity measurements. This allowed us to determine the phase boundaries between the membrane and the mixed micelles domains. We have also characterized the lipid and protein content of the solubilized material and of the reconstituted envelope. Both G and M proteins and all of the lipids of the envelope were extracted by octylglucoside and recovered in the reconstituted envelope. Fusion activity of the virosomes tested either on Vero cells or on liposomes showed kinetics and pH dependence similar to those of the intact virus.  相似文献   

5.
In order to explore the effect of electric charge on detergent solubilization of phospholipid bilayers, the interaction of nine electrically charged surfactants with neutral or electrically charged liposomes has been examined. The detergents belonged to the alkyl pyridinium, alkyl trimethylammonium or alkyl sulphate families. Large unilamellar liposomes formed by egg phosphatidylcholine plus or minus stearylamine or dicetyl phosphate were used. Solubilization was assessed as a decrease in light-scattering of the liposome suspensions. The results suggest that electrostatic forces do not play a significant role in the formation of mixed micelles and that hydrophobic interactions are by far the main forces involved in solubilization. In addition, from the study of thirty different liposome-surfactant systems, we have derived a series of empirical rules that may be useful in predicting the behaviour of untested surfactants: (i) the detergent concentration producing the onset of solubilization (Don) decreases as the alkyl chain length increases; the decrease follows a semi-logarithmic pattern in the case of alkyl pyridinium compounds; (ii) for surfactants with critical micellar concentrations (cmc) less than 6 x 10(-3) M, Don. is independent of the nature of the detergent and the bilayer composition; for detergents having cmc greater than 6 x 10(-3) M, Don. increases linearly with the cmc; and (iii) Don. varies linearly with the surfactant concentration that produces maximum solubilization.  相似文献   

6.
The solubilization of multilamellar egg yolk lecithin liposomes by sodiumtaurodeoxycholate in aqueous phase was studied by ultrafiltration as a function of time, bile salt and cholesterol concentration. The corresponding equilibrium states were analysed. Complete solubilization was achieved at total bile salt/lecithin molar mixing ratios of approximately 5. The minimum ratio to start solubilization was 0.1, corresponding to a free bile salt concentration of only 5% of the critical micelle concentration (CMC). Mean equilibrium constants for the partition of bile salts between non-filterable aggregates and filterable mixed micelles and also the free bile salt concentration were determined. Sodiumtaurodeoxycholate had a higher affinity for small mixed micelles than for lamellar mixed aggregates especially in the presence of cholesterol, which reduces the degree and rate of the solubilization process. A non-homogeneous distribution of bile salts in the lipid phase was detected at low bile salt concentrations.  相似文献   

7.
Solubilization of sonicated unilamellar vesicles by Triton X-100 is a complex process. Solubilization starts at low detergent concentrations, as compared to the case of large vesicles, and is accompanied by the simultaneous rapid formation of large multilamellar liposomes. Measurements of lipid and detergent distribution indicate that, at a 1:1 lipid:detergent mole ratio, about one-third of the lipid, with most of the detergent, is solubilized in the form of mixed micelles. The remaining two-thirds are in the form of multilamellar liposomes, virtually free of detergent. Higher detergent concentrations also bring about the solubilization of these liposomes.  相似文献   

8.
D Levy  A Gulik  M Seigneuret  J L Rigaud 《Biochemistry》1990,29(40):9480-9488
The processes of liposome solubilization and reconstitution were studied by using n-dodecyl octaethylene glycol monoether (C12E8). The solubilization of large unilamellar liposomes prepared by reverse-phase evaporation was systematically investigated by turbidity, 31P nuclear magnetic resonance, and centrifugation experiments. The solubilization process is well described by the three-stage model previously proposed for other detergents, and our results further demonstrate the validity of some of the postulates related to this model. In stage I, the detergent distributes between the bilayers and the aqueous solution with a partition coefficient of 1.6 mM-1. In stage II, the detergent-saturated liposomes convert into mixed micelles, the conversion being complete by stage III where all the phospholipids are present as mixed micelles. The agreement between the three methods was excellent, and the results allowed quantitative determination of the effective detergent to phospholipid ratios at which the lamellar to micellar transformation begins and is complete, which amounted to 0.66 and 2.2 (mol/mol), respectively. Furthermore, compositional analysis determined from centrifugation experiments directly demonstrate that the properties of detergent-saturated liposomes and mixed micelles remain constant throughout most of stage II: the C12E8 to phospholipid ratios in the pelleted vesicles and in micelles are constant during stage II and similar to the ratios at which stage II was initiated and complete, respectively. On the other hand, bilayer formation upon detergent removal from mixed C12E8-phospholipid micelles by SM2 Bio-Beads is demonstrated to be the symmetrical opposite of bilayer solubilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
P A Timmins  J Hauk  T Wacker  W Welte 《FEBS letters》1991,280(1):115-120
The presence of small amphiphiles has been found to be necessary in the crystallization of several membrane-protein/surfactant complexes. It has been suggested that the role of the small amphiphile may be to reduce the size of the surfactant belt around the protein, making the formation of crystals easier. Thus far it was not known if this would involve changes in micellar size in general or whether the small amphiphile would merely replace LDAO during crystal growth. In the present study we have used small angle neutron scattering to study mixed micelles of lauryldimethyl amine oxide (LDAO; hydrogenated and deuterated) and heptane-1,2,3-triol (HP). Our results show that with increasing overall HP concentrations mixed LDAO/HP micelles of decreasing mass and radius are formed. The composition of these micelles has been determined. HP thus may decrease the size of the surfactant belt around a protein before crystallisation by insertion into a host micelle. As HP is a 'small amphiphile' compared to the surfactants used for solubilization of membrane proteins, the curvature of the host micelle will be increased by its insertion.  相似文献   

10.
Biodegradation of naphthalene in aqueous nonionic surfactant systems.   总被引:12,自引:3,他引:12       下载免费PDF全文
The principal objective of this study was to quantify the bioavailability of micelle-solubilized naphthalene to naphthalene-degrading microorganisms comprising a mixed population isolated from contaminated waste and soils. Two nonionic surfactants were used, an alkylethoxylate, Brij 30 (C12E4), and an alkylphenol ethoxylate, Triton X-100 (C8PE9.5). Batch experiments were used to evaluate the effects of aqueous, micellized nonionic surfactants on the microbial mineralization of naphthalene and salicylic acid, an intermediate compound formed in the pathway of microbial degradation of naphthalene. The extent of solubilization and biodegradation under aerobic conditions was monitored by radiotracer and spectrophotometric techniques. Experimental results showed that surfactant concentrations above the critical micelle concentration were not toxic to the naphthalene-degrading bacteria and that the presence of surfactant micelles did not inhibit mineralization of naphthalene. Naphthalene solubilized by micelles of Brij 30 or Triton X-100 in liquid media was bioavailable and degradable by the mixed culture of bacteria.  相似文献   

11.
The interaction of the nonionic surfactant dodecylmaltoside (DM) with phosphatidylcholine liposomes was investigated. Permeability alterations were detected as a change in 5(6)-carboxyfluorescein released from the interior of vesicles and bilayer solubilization as a decrease in the static light scattered by liposome suspensions. This surfactant showed higher capacity to saturate and solubilize PC liposomes and greater affinity with these structures than those reported for the octyl glucoside. At subsolubilizing level an initial maximum in the bilayer/water partitioning (K) followed by an abrupt decrease of this parameter occurred as the effective molar ratio of surfactant to phospholipid in bilayers (Re) rose. However, at solubilizing level a direct dependence was established between both parameters. A direct correlation took place in the initial interaction steps (Re up to 0.28) between the growth of vesicles, their fluidity, and Re. A similar direct dependence was established during solubilization (Re range from 0.9 to 1.7) between the decrease in both the surfactant-PC aggregate size, the light scattering of the system, and Re (composition of aggregates). The fact that the free DM concentration at subsolubilizing and solubilizing levels showed values lower than and similar to its critical micelle concentration indicates that permeability alterations and solubilization were determined, respectively, by the action of surfactant monomer and by the formation of mixed micelles.  相似文献   

12.
The ability of several surface-active agents to stimulate the humoral immune response in mice against haptenated liposomes was tested. The surfactants were block copolymers of hydrophilic polyoxyethylene (POE) and hydrophobic polyoxypropylene (POP) that differed in m.w., percentage of POE, and mode of linkage of POP to POE. The liposomes were haptenated with tripeptide-enlarged dinitrophenyl coupled to phosphatidylethanolamine, which was incorporated into the liposomal membrane. Additional injection of mice with surfactant stimulated serum hemagglutination titers and splenic plaque-forming cell (PFC) numbers to varying extents. Block polymers with POP chains flanking a POE center, as well as polymers with POE chains flanking a POP center, displayed high adjuvant activity. These block polymers stimulated the antibody response in a dose-dependent manner. They stimulated the antibody response with both high and low antigen doses. Furthermore, the addition of one of these adjuvants (25R1) reduced the amount of carrier lipid required in the liposome in order to obtain an optimal antibody response. The surfactants, which displayed high adjuvant activity, did not interfere with liposome stability as measured with a liposome lysis assay. Moreover, in vitro preincubation of liposomes with a block polymer did not affect their immunogenicity. Optimal adjuvant activity was observed when both adjuvant and liposomes were administered by the same route. Simultaneous injection of both components, however, is not a prerequisite. Conclusively, it can be stated that nonionic block polymer surfactants are potent adjuvants for stimulation of the antibody response against haptenated liposomes.  相似文献   

13.
Continuing our earlier study of the retention behaviour in reversed-phase systems with aqueous mobile phases containing surfactants in concentrations lower (submicellar systems) and higher (micellar systems) than the critical micellar concentration (CMC), we investigated the chromatographic behaviour of various non-ionic solutes in mixed aqueous-organic micellar and submicellar mobile phases and their dependence on the methanol concentration. CMC values were measured for two cationic surfactant and one anionic surfactant in mixed aqueous-methanolic solvents, and were found to increase slightly with increasing methanol concentration. Depending on the character of the surfactant, a limiting concentration of methanol was found, above which micelles do not occur anymore. Sorption isotherms of the surfactants on an octylsilica gel column were measured as a function of the concentration of methanol in aqueous-methanolic solvents. A modified Langmuir equation was used to describe the distribution of the surfactants between the stationary and the mobile phases in the concentration range below CMC. The retention of several polar solutes was measured on an octylsilica gel column both in micellar and submicellar mobile phases containing methanol. The dependencies of the capacity factors of the solutes studied on the concentration of methanol in the mobile phase can be suitably described by the same form of equation as that conventionally used for aqueous-organic mobile phases that do not contain surfactants, but the slopes of the dependencies for a given solute are different in the two ranges of surfactant concentrations. The ratio of the two slopes is controlled by the interaction with micelles and is approximately equal to, below or above 1, depending on whether the solutes do or do not associate with the micelles, or are repulsed from them. Simultaneous control of the concentrations of the organic solvent and of the surfactant in the mobile phase can be used for fine tuning the selectivity of separation as a complement to commonly used adjusting concentrations of two organic solvents in ternary aqueous-organic mobile phases. These effects are illustrated by practical examples of submicellar HPLC with mobile phases containing methanol.  相似文献   

14.
Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside   总被引:6,自引:0,他引:6  
The dissolution and formation of egg phosphatidylcholine (PC) vesicles by the detergent octyl glucoside were examined systematically by using resonance energy transfer between fluorescent lipid probes, turbidity, and gel filtration chromatography. Resonance energy transfer was exquisitely sensitive to the intermolecular distance when the lipids were in the lamellar phase and to the transitions leading to mixed micelles. Turbidity measurements provided information about the aggregation of lipid and detergent. Several reversible discrete transitions between states of the PC-octyl glucoside system were observed by both methods during dissolution and vesicle formation. These states could be described as a series of equilibrium structures that took the forms of vesicles, open lamellar sheets, and mixed micelles. As detergent was added to an aqueous suspension of vesicles, the octyl glucoside partitioned into the vesicles with a partition coefficient of 63. This was accompanied by leakage of small molecules and vesicle swelling until the mole fraction of detergent in the vesicles was just under 50% (detergent:lipid ratio of 1:1). Near this point, a transition was observed by an increase in turbidity and release of large molecules like inulin, consistent with the opening of vesicles. Both a turbidity maximum and a sharp increase in fluorescence were observed at a detergent to lipid mole ratio of 2.1:1. This was interpreted as the lower boundary of a region where both lamellar sheets and micelles are at equilibrium. At a detergent:lipid ratio of 3.0:1, another sharp change in resonance energy transfer and clarification of the suspension were observed, demarcating the upper boundary of this two-phase region. This latter transition is commonly referred to as solubilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Knowledge of the partition process of environmentally significant molecules between biological membranes and their surroundings is of vital importance to explain their activity and toxicity, as well as phenomena like absorption, distribution and metabolism. In this research effort, we have studied membrane interactions of three surfactants: t-octylphenoxypolyethoxyethanol (Triton X-100), cetyltrimethylammonium chloride (CTAC) and dodecylbenzene sulphonate (SDBS). Unilamellar liposomes (LUVs) of egg yolk phosphatidylcholine (EPC) were used as membrane models. The partition coefficient, a fundamental parameter in assessing the behaviour of xenobiotic compounds, was determined for SDBS and Triton X-100 by derivative spectrophotometry and fluorescence quenching. The effect of these surfactants upon the physico-chemical characteristics (fluidity, diameter and surface charge) of the liposome membrane was also determined. Results show that all the three surfactants cause an increase in fluidity of the liposome membrane, although for low surfactant concentrations uncharacteristic membrane rigidity was observed, probably due to a change in lipid packing density.  相似文献   

16.
Disintegration by surfactants of egg yolk phosphatidylcholine vesicles stabilized with carboxymethylchitin was investigated by measuring the amount released of a marker dye from the vesicles. In solutions of pH around 7, anionic and nonionic surfactants caused vesicle disintegration at very low concentrations, while cationic surfactants produced a breakdown of the vesicles at rather high concentrations. Increase in the alkyl chain-length of surfactant molecules brought about decrease in the surfactant concentration at which vesicle disintegration starts. As the length of the polyoxyethylene chain in nonionic surfactant molecules increased, the tendency of vesicle disintegration to occur decreased. Both anionic and cationic surfactants gave clear solutions above their critical micelle concentrations when they acted on the phospholipid vesicles, whereas nonionic surfactants left ghost cell-like debris consisting of carboxymethylchitin molecules in their micellar solutions. The effect of pH on vesicle disintegration was notable for ionic surfactants but not for nonionic surfactants. Thus, anionic surfactants increased the degree of disintegration as pH increased, while cationic surfactants produced an identical vesicle disintegration curve below pH 8 above which the curve started to shift toward the lower concentration region of the agents. These findings were explained in terms of surfactant penetration into phospholipid bilayers and solubilization of phospholipid molecules by surfactant micelles.  相似文献   

17.
Over 50 detergents were tested to establish which would be most effective in releasing proteins from membrane-bounded compartments without denaturating them. Various concentrations of each detergent were tested for two activities: (1) solubilization of egg phospholipid liposomes as measured by reduction of turbidity and (2) effect of detergent concentration on the activities of soluble, hydrolytic enzymes. Those detergents must effective in solubilizing 0.2% lipid and least detrimental to enzymes were five pure, synthetic compounds recently introduced: CHAPS, CHAPSO, Zwittergents 310 and 312, and octylglucoside. Industrial detergents were generally much inferior, insofar as they solubilized membranes inefficiently and/or inactivated certain hydrolytic enzymes readily. The five detergents were characterized by (a) an unusually high critical micelle concentration and (b) a preference for forming mixed micelles with lipids instead of forming pure micelles, as indicated by an ability to solubilize lipid at concentrations of detergent significantly below the critical micelle concentration. This characteristic permits solubilization of high concentrations of membrane below the critical micelle concentration of the detergent so that protein denaturation is minimized. A generally applicable guideline that emerged from this study is that detergents should be used at approximately their critical micelle concentration which should not be exceeded by the concentration of membrane. Similar considerations should apply to the use of detergents in purifying and reconstituting intrinsic membrane proteins.  相似文献   

18.
The effect of surfactants on the aggregation state of amphotericin B   总被引:3,自引:0,他引:3  
We have studied the effect of two surfactants, one non-ionic, lauryl sucrose (LS) and the other ionic, sodium deoxycholate (DOC), on the aggregation state of amphotericin B (AmB) and its selectivity towards ergosterol and cholesterol. It is shown that the addition of these surfactants has very similar effects on the AmB micelles. Below the critical micellar concentration of the surfactants, mixed micelles with AmB are first formed as a result of the penetration of the surfactant molecules into the AmB micelles. At higher concentrations of the surfactant molecules, the micellar structure is completely destroyed and AmB is found as monomers in solution. When the concentration of the surfactant is further increased, micelles of the surfactant molecules are built up, AmB remaining in monomeric form. However, the critical micellar concentration of LS is modified by the presence of AmB in solution, while that of DOC is not affected, thereby indicating that the interactions of AmB with LS are stronger than those of DOC with AmB. We also show that both surfactants enhance the selectivity of the AmB binding to sterols at exactly the concentrations of the surfactants which induce the monomerization of the antibiotic. It is observed that the maximal selectivity is found at a concentration of the surfactants corresponding to their particular CMC in presence of the antibiotic.  相似文献   

19.
Mixed micelle formation of the polydisperse nonionic surfactant Triton X-100 as well as its homogeneous analogue, p-(1,1,3,3-tetramethylbutyl)-phenoxynonaoxyethylene glycol (OPE-9), with bovine brain sphingomyelin or dipalmitoyl phosphatidylcholine has been characterized by column chromatography on 6% agarose. At 40 degrees C, mixtures of OPE-9 and either sphingomyelin or dipalmitoyl phosphatidylcholine give a narrow size distribution for mixed micelles. A this temperature the size distribution of Triton X-100-containing mixed micelles is complicated because of the polydispersity of the oxyethylene chains. At 20 degrees C narrow size distributions are observed for mixed micelles of sphingomyelin/Triton X-100 and sphingomyelin/OPE-9 up to at least 0.06 mol fraction of lipid. For dipalmitoyl phosphatidylcholine this is observed only with OPE-9. At intermediate mol fractions of lipid (around 0.25), two populations of mixed micelles exist for sphingomyelin/Trition X-100, sphingomyelin/OPE-9, and dipalmitoyl phosphatidylcholine/OPE-9. At high mol fractions of lipid only one population of mixed micelles again exists. At 20 degrees C, sphingoymelin forms a clear solution with Triton X-100 and OPE-9 to a lipid mol fraction of at least 0.46 and 0.67, respectively. Dipalmitoyl phosphatidylcholine forms a clear solution with OPE-9 to a lipid mol fraction of at least 0.57 at the same temperature. Triton X-100 and dipalmitoyl phosphatidylcholine do not form stable, clear solutions at 20 degrees C unless the lipid mol fraction is extremely low. These results show that surfactant polydispersity and temperature are important determinants in the solubilization of lipids by nonionic surfactants. It is also shown that pure surfactant micelles and lipid/surfactant mixed micelles do not co-exist in the same solution.  相似文献   

20.
Phytophenols were solubilized in nonionic surfactant micelles to form antimicrobially active and thermodynamically stable microemulsions. Formulation of phytophenols in microemulsions has previously been shown to improve their antimicrobial activity in model microbiological and food systems. Carvacrol and eugenol were incorporated in micellar solutions of two nonionic surfactants (Surfynol® 485W and Surfynol® 465) by mixing at room temperature. Particle size of formed microemulsions was determined by dynamic light scattering, and structural information about the mixed micellar system was obtained by nuclear magnetic resonance spectroscopy (NMR). Uptake of carvacrol and eugenol in surfactant micelles as determined by ultrasonic velocity measurements was very rapid, e.g., below the maximum additive concentration, the phytophenols were completely solubilized in the micelles in less than 30 min. Depending on the surfactant–phytophenol combination, the self-assembled surfactant–phytophenol aggregates had mean particle diameters between 3 and 17 nm. Elucidation of the structure of aggregates by 1H NMR studies indicated that micelles had a “bracket-like” structure with phytophenols being located inside the palisade layer of the micelle in direct contact with adjacent surfactant monomers. Encapsulation of phytophenols in surfactant micelles enables the incorporation of large amounts of hydrophobic antimicrobials in aqueous phases. Formulation of antimicrobial microemulsions may thus offer a means to deliver high concentrations of phytophenols to the bacterial surfaces of foodborne pathogens to affect kill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号