首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapidly labelled, polyadenylated RNA is contained in three distinct fractions isolated from homogenized amphibian oocytes: (a) in ribonucleoprotein particles that are associated with a fibrillar matrix, the complexes sedimenting at greater than 1500S; (b) in ribonucleoprotein particles that sediment at 20-120S and have the characteristics of stored (maternal) messenger ribonucleoprotein (mRNP) and (c) in polyribosomes that sediment at 120-360S. We have compared the RNA and protein components of the first two of these RNP fractions. The polyadenylated RNA extracted from the two RNP fractions differs in that the RNA from fibril-associated RNP contains a much higher content of repeat sequences than does the RNA from mRNP. In other words, the RNA from fibril-associated RNP is largely unprocessed and may constitute a premessenger state, which for convenience is referred to as premessenger RNP (pre-mRNP). RNA-binding experiments demonstrate that the polypeptide most tightly bound in pre-mRNP is a 54-kDa component (p54), whereas the polypeptide most tightly bound in mRNP is a 60-kDa component (p60). Antibodies raised against p60 are used to show that this polypeptide is a common major component of pre-mRNP and mRNP and that it is also located in oocyte nuclei. However the state of p60 is modified between the premessenger and stored message levels: the polypeptide in mRNP is heavily phosphorylated whereas the equivalent polypeptide in pre-mRNP is completely unphosphorylated. The relative roles of the presence of repeat sequences and phosphorylation of mRNA-associated protein in blocking translation are discussed.  相似文献   

2.
Five of the stable low molecular weight RNA species in the HeLa cell nucleus have been localized in RNP complexes in the cell nucleus. The two abundant species C and D and the three minor species F, G′ and H are found in RNP particles following two different methods of preparation. Sonication of nuclei releases the five small RNAs and also the hnRNA in RNPs that sediment in a range from 10 to 150 S. Alternatively, incubation of intact nuclei at elevated temperature and pH releases four of the small RNAs and degraded hnRNA in more slowly sedimenting structures.When nuclear RNPs obtained by sonication are digested with RNAase in the presence of EDTA, the hnRNA is degraded and the hnRNPs sediment at 30 S. The structures containing the small RNA species D are similarly shifted to 30 S particles by RNAase and EDTA but not by either agent alone. In contrast, the sedimentation of complexes containing species G′ and H are not altered by exposure to RNAase/EDTA and small RNA species C and F are unstable under these conditions.In isopycnic metrizamide/2H2O gradients species D and hnRNA accumulate at a density characteristic of RNP particles. They have a similar but not identical distribution.Species D is released from large RNPs by salt concentrations of 0.1 m-NaCl or greater, while the hnRNA remains in large RNP particles. In contrast, the structures containing species G′ and H are stable in 0.3 m-NaCl. All five of the small nuclear RNA species and the hnRNAs are released from rapidly sedimenting complexes by the ionic detergent sodium deoxycholate.It is suggested that the low molecular weight RNA species play a structural role in RNP particles in the cell nucleus and that a subpopulation of species D may be associated with the particles that package the hnRNA.  相似文献   

3.
Two populations of free messenger ribonucleoprotein (mRNP) particles, sedimenting at 20 S and 40 S respectively, were isolated from a rat liver postpolysomal supernatant. After treatment with 0.5 M KCl and recentrifugation through a sucrose layer, the mRNP particles were characterized with respect to their low-molecular-weight RNA and protein components. 40-S and 20-S particles show very different RNA patterns. Four distinct low-molecular-weight RNA species of approximately 105, 139, 187 and 256 nucleotides were found as components of the 40-S mRNPs. The 20-S mRNP particles contain one major low-Mr RNA species of approximately 243 nucleotides and a characteristic pattern of low-Mr RNAs similar to the one found in nuclear ribonucleoprotein particles. In contrast to the low-Mr RNAs found in nuclear RNP particles most of the low-Mr RNA species present in 20-S and 40-S mRNP particles are rapidly labeled after [3H]orotate administration. Whereas the low-Mr RNA composition of 20-S and 40-S mRNP particles is very different, the protein patterns of both mRNP complexes are very similar. Six major polypeptides with the following molecular weights of 117000, 79800, 76700, 53800, 43900, 36300 and several minor ones were found in both 20-S and 40-S mRNPs. In a cell-free system from wheat germs neither 20-S nor 40-S mRNP particles stimulated the incorporation of [3H]leucine into proteins. However, phenol-extracted RNA from 20-S and 40-S mRNPs stimulated total protein synthesis 16-fold and 3-fold, respectively. Furthermore, the RNA from both mRNP pools directed the synthesis of albumin in vitro.  相似文献   

4.
Prosomes were first described as being mRNA-associated RNP (ribonucleoprotein) particles and subcomponents of repressed mRNPs (messenger ribonucleoprotein). We show here that prosomes isolated from translationally inactive mRNP have a protease activity identical to that described by others for the multicatalytic proteinase complex (MCP, 'proteasome'). By RNase or non-ionic detergent treatment, the MCP activity associated with repressed non-globin mRNP from avian erythroblasts, sedimenting at 35 S, could be quantitatively shifted on sucrose gradients to the 19-S sedimentation zone characteristic of prosomes, which were identified by monoclonal antibodies. The presence of small RNA in the enzymatic complex was shown by immunoprecipitation of the protease activity out of dissociated mRNP using a mixture of anti-prosome monoclonal antibodies; a set of small RNAs 80-120 nucleotides long was isolated from the immunoprecipitate. Furthermore, on CsCl gradients, colocalisation of the MCP activity with prosomal proteins and prosomal RNA was found, and no difference in the prosomal RNA pattern was observed whether the particles were fixed or not prior to centrifugation. These data indicate that the MCP activity is a property of prosomes, shown to be in part RNP and subcomplexes of in vivo untranslated mRNP. A hypothesis for the role of the prosome-MCP particles in maintaining homeostasis of specific protein levels is proposed.  相似文献   

5.
Ribonucleoprotein complexes (RNP) sedimenting between 10 and 15 S were isolated from the postpolysomal cytoplasmic fraction of embryonic chicken muscle. These RNP complexes lack mRNA but contain RNA with a sedimentation coefficient of 4.4 S. The 4.4 S RNA did not arise as a product of degradation during the course of the isolation procedure nor did it contain oligo(U)- or poly(A)-rich regions. Furthermore, the 4.4 S RNA-containing RNP complex was easily separable from free mRNPs and, therefore, is not considered as part of the free mRNP complexes. Both the 4.4 S RNA and 10 to 15 S RNP were able to inhibit translation of either "capped" or "uncapped" mRNA in a heterologous cell-free system. This inhibitory effect may result from interference of 4.4 S RNA with an early event in mRNA translation. A large number of polypeptides of Mr = 14,000 to 220,000 were present in the 10 to 15 S RNP. Among these, the most prominent polypeptides were of Mr = 36,000; 48,000; 52,000; 58,000; 65,000; 78,000; 84,000; 96,000; 105,000; 165,000; and 220,000. With the exception of the Mr = 36,000 polypeptide, these major components were also found in the nonpolysomal cytoplasmic mRNA protein complexes (free mRNP).  相似文献   

6.
RIBOSOME PRECURSOR PARTICLES IN NUCLEOLI   总被引:12,自引:9,他引:3       下载免费PDF全文
Ribonucleoprotein (RNP) particles containing the precursors of ribosomal RNA were extracted from L cell nucleoli and analyzed under conditions comparable to those used in the characterization of cytoplasmic ribosomes. Using nucleoli from cells suitably labeled with 3H-uridine, we detected three basic RNP components, sedimenting at approximately 62S, 78S, and 110S in sucrose gradients containing magnesium. A fourth particle, sedimenting at about 95S, appears to be a dimer of the 62S and 78S components. When centrifuged in gradients containing EDTA, the 62S, 78S, and 110S particles sediment at about 55S, 65S, and 80S, respectively. RNA was extracted from RNP particles which were prepared by two cycles of zonal centrifugation. The 62S particles yielded 32S RNA and a detectable amount of 28S RNA, the 78S structures, 32S RNA and possibly some 36S RNA, and the 110S particles, a mixture of 45S, 36S, and 32S RNA's. When cells were pulsed briefly and further incubated in the presence of actinomycin D, there was a gradual shift of radioactivity from heavier to lighter particles. This observation is consistent with the scheme of maturation: 110S → 78S → 62S. The principal buoyant densities in cesium chloride of the 110S, 78S, and 62S particles are 1.465, 1.490, and 1.545, respectively. These densities are all significantly lower than 1.570, which is characteristic of the mature large subunit of cytoplasmic ribosomes, suggesting that the precursor particles have a relatively higher ratio of protein to RNA, and that ribosome maturation involves, in addition to decrease in the size of the RNA molecules, a progressive decrease in the proportion of associated protein.  相似文献   

7.
8.
Rat liver nuclear ribonucleoprotein particles were prepared by two different methods and defined as 40S ribonucleoprotein (40S RNP) and heterogeneous nuclear ribonucleoprotein (HnRNP) particles. The RNP particles were either solubilized in 8 M urea--6 mM 2-mercaptoethanol--20 mM glycine--20 mM Tris--HCl (pH 8.4) or subjected to removal of RNA by phenol extraction prior to solubilizing the proteins in the urea buffer. The proteins associated with 40S RNP and HnRNP were heterogeneous and very similar in their electrophoretic patterns when analyzed by two-dimensional PAGE, except a protein with molecular weight of 62 000 and an isoelectric point (pI) of 6.2 was present only in HnRNP particles. At least 12 major and 22 minor components could be identified in both preparations. The major proteins were found at pI values varying from 6.0 to 8.5 and with molecular weights from 32 000 to 42 000, and a group of proteins with molecular weight approximately 65 000 were more prominent in HnRNP than in 40S RNP. The other components were found mainly at pI ranges from 5.0 to 6.5 with molecular weights from 43 000 to 65 000. The phenol method extracted essentially all proteins associated with either 40S RNP and HnRNP, but was less effective in extracting a group of proteins with pI values from 5.0 to 5.5 and more efficient for proteins with pI values from 7.5 to 8.5. When chromatin proteins isolated by phenol extraction were compared with HnRNP particle proteins isolated by the same method, the electrophoretic mobilities of the HnRNP particle proteins were found to be identical with a fraction nonhistone chromatin proteins. The 40S RNP particles were further purified by metrizamide isopycnic density gradient centrifugation. The electrophoretic patterns of these proteins were very similar to those prepared by sucrose density gradient centrifugation. Therefore, we concluded that the proteins of RNP particles constituted part of the chromatin proteins.  相似文献   

9.
10.
The nuclear ribonucleoprotein (RNP) particles containing rapidly labeled RNA were isolated from interphase cells of the cellular slime mold Dictyostelium discoideum and characterized. The size of the isolated RNP particles was small (10S to 50S) in comparison with that of nuclear RNP particles found in higher eukaryotes. These small RNP particles do not seem to be artifacts due to degradation during the preparation of nuclear extracts. The rapidly labeled RNA of the nuclear RNP particles was heterogeneous in size and a considerable amount contained polyadenylic acid sequences. Synthesis of RNA in the nuclear RNP particles was resistant to a relatively high concentration of actinomycin D. The protein component of the RNP particle consists of at least four proteins with molecular weights of 80,000, 66,000, 60,000, and 42,000. Thus it is suggested that almost all of the nuclear RNP particles containing rapidly labeled RNA in interphase cells are RNP complexes consisting of Heterogeneous nuclear RNA and several protein species.  相似文献   

11.
In vitro reconstitution of hnRNP particles   总被引:1,自引:0,他引:1  
The assembly of hnRNP-like particles was studied by in vitro reconstitution, UV-crosslinking and CsCl-equilibrium centrifugation. Using total nuclear protein and RNA extracts from HeLa cells for RNP reconstitution, RNP particles sedimenting with the same buoyant density of p = 1.4 g/cm3 as 'native' 40 S core hnRNPs were obtained. Under the stringent reconstitution conditions used, hnRNP complexes containing only the Cl-core hnRNP protein could be identified.  相似文献   

12.
A heterogeneous RNP structure has been isolated from rat liver nuclei by a method previously used for the isolation of 30S RNP complexes carrying heterogeneous RNA (hnRNA) [1]. The RNP sediments in sucrose gradients with s-values of 70-110S. Formaldehyde-fixed preparations band at Q = 1.40 in isopycnic CsCl gradients. The RNP structure is composed of a heterogeneous population of polypeptides, prominent among which are two proteins with Mr 74000 and 72000. It contains both rapidly labelled RNA as well as several species of snRNA, as demonstrated by double-labelling experiments and gel electrophoresis. Treatment of rats with alpha-amanitin leads to a significant decrease in the amount of recovered RNP. In the presence of 0.7 M NaCl the s-value of the complex changes from 70-110S to 40-80S. The RNP structure is stable to mild RNase A or micrococcal nuclease digestion. Transmission electron microscopy reveals the presence of a heterogeneous population of particles with a mean diameter of 300-360 A. The isolated RNP structure differs completely from the well-known monoparticle or polyparticle hnRNP complexes and from the 30S or smaller snRNP particles but could be similar to or identical with the heterogeneous complex described by Jacob et al. [29].  相似文献   

13.
Specific premessenger ribonucleoprotein (RNP) particles, the Balbiani ring (BR) granules from Chironomus tentans salivary glands, were treated with RNase A to study the effect of RNA strand breaks on the higher order structure of the particles. Isolated, radioactively labeled BR granules, known to sediment at 300 S, were digested with RNase A and centrifuged in sucrose gradients. The fractionated particles were subsequently analyzed using electron microscopy and caesium chloride centrifugation. At a low RNase concentration, most of the 300 S particles disintegrated completely, and no metastable degradation products were observed. At intermediate RNase concentrations, no 300 S particles were left, but a minor fraction of the BR granules had unfolded and sedimented at 160 S. These granules could represent particles modified during the RNase treatment or represent a more slowly degrading subfraction of the particles. At a high RNase concentration, no RNP particles at all remained in the gradient. The rapid disintegration of the majority of the BR granules was investigated further by electrophoretic analysis of RNA in the remaining particles. During the RNase treatment BR granules, still sedimenting at 300 S, accumulated strand breaks; in fact, as many as 50 to 100 nicks in the 37 kb RNA could be tolerated. It was concluded from RNA analyses that the disintegration of the BR granules was not dependent on any single nick in the RNA, nor on the accumulation of a certain number of nicks, but rather on one or a few critical strand breaks. We propose that there are organizing sequences essential for particle integrity; once these sequences are nicked, the premessenger RNP particles are rapidly and completely degraded.  相似文献   

14.
In duck erythroblasts, two major populations of untranslated messenger (m) RNP can be separated by sucrose gradient centrifugation in low ionic strength. One of these contains globin mRNA associated to protein factors, among them the prosomes. The other, sedimenting in the 35S zone, contains non-globin mRNA. From this '35S' mRNP, a new RNP particle called the prosome-like particle was isolated and characterized [Akhayat, O., Infante, A. A., Infante, D., Martins de Sa, C., Grossi de Sa, M.-F. & Scherrer, K. (1987) Eur. J. Biochem. 170, 23-33]. The PLP is a multimer of a protein of M(r) 21,000, and contains small RNA species. The particle is tightly associated with repressed mRNA and inhibits in vitro protein synthesis. We show here that the protein of M(r) 21,000, constituting the prosome-like particle, is apoferritin. Different approaches confirm the RNP character of this particle and provide evidence that some of its RNA species are tRNA. The hypothesis is discussed as to whether (apo-)ferritin might serve other functions in addition to iron storage.  相似文献   

15.
Ribonucleoprotein particles present in extracts of nuclei prepared from Tetrahymena pyriformis labelled for 1, 2.5, 5 and 10 min with [3H]uridine during exponential growth were analysed by sedimentation through linear 10--30% sucrose gradients. After 1 min of labelling, the early ribosomal RNA precursor (36-S) is found to be associated with slowly sedimenting particles which form a broad peak centred at approximately 50 S. Other kinds of particles sedimenting at 80 S, 66 S, 60 S and 44 S are observed when labelling is carried out for longer periods (2.5, 5 and 10 min). The 80-S particle contains 29-S and 18-S RNA species together with traces of 36-S RNA; the 60-S and 44-S particles contain 26-S and 17-S RNAs respectively. Similar results were obtained when [Me-3H]methionine was used for labelling in place of [3H]uridine. Methylation of the RNA present in slowly sedimenting nuclear components (30-70-S) is rapid, reaching a plateau at 5 min while that of the faster sedimenting (70--90-S) components is still increasing after 10 min. Only three types of ribonucleoprotein particles (80-S, 66-S, and 44-S) were observed when the cells were labelled after prolonged starvation. A scheme of ribosome biogenesis based on these results is presented.  相似文献   

16.
Free cytoplasmic messenger ribonucleoprotein (mRNP) particles from rat liver were treated with EDTA and separated into two populations of RNP particles with sedimentation maxima of 20 S and 35 S respectively. The 20-S and 35-S RNP particles, treated with 0.5 M KCl, have protein-to-RNA ratios of 0.31:1 and 5.7:1 respectively. Whereas 20-S and 35-S RNP particles exhibit a similar protein complement of seven major polypeptides, the low-molecular-weight RNA components of the two particle populations are different. A characteristic set of distinct low-molecular-weight RNAs is found for 20-S and 35-S RNP particles. When the individual low-molecular-weight RNAs of 20-S and 35-S RNP particles isolated from preparative polyacrylamide gels were assayed for their capability to inhibit protein synthesis in vitro, several potent translational inhibitory RNAs were detected. In particular, the low-molecular-weight RNAs of 147, 203 and 263 nucleotides in length associated with the 35-S RNP particles turned out to be strong inhibitors of protein synthesis.  相似文献   

17.
Ribosomal precursor particles of Bacillus megaterium.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pulse-labeled cells of Bacillus megaterium were converted to protoplasts, and lysates of the protoplasts were analyzed by sucrose gradient sedimentation. Precursor ribonucleoprotein (RNP) particles then appeared predominantly as 50S and 30S precursor ribosomal subunits. Polyacrylamide gel electrophoresis of the ribosomal ribonucleic acid from the 50S and 30S RNP particles confirmed their precursor nature since they were shown to contain precursor 23S and 16S ribosomal ribonucleic acid, respectively. Treatment of protoplast lysates with 0.5% deoxycholate prior to sedimentation analysis resulted in a markedly different radioactivity profile. The 50S RNP particles were no longer present, but 43S particles were observed in addition to increased amounts of pulse-labeled material sedimenting at 30S and slower. Extracts from cells broken in a French press showed a profile from sucrose gradient sedimentation similar to that of the deoxycholate-treated protoplast lysate. These data suggest that the nature of the precursor ribosomal particles appears to be a function of the method of cell disruption or detergent treatment of the cell extract preparation. The observed 50S and 30S RNP particles may be the major precursor ribosomal subunits in vivo; the slower-sedimenting species could result from some form of breakdown or change in the configuration of the 50S and 30S precursors.  相似文献   

18.
The putative 15 S precursor of globin mRNA contains a poly (A) sequence   总被引:2,自引:0,他引:2  
[3H] Uridine or [3H] adenosine pulse-labelled nuclear RNA was isolated from chicken immature red blood cells and separated on denaturing formamide sucrose gradients. RNA of each gradient fraction was hybridized with unlabelled globin DNA complementary to mRNA (cDNA) and subsequently digested by RNAase A and RNAase T1. The experiments revealed two RNA species with globin coding sequences sedimenting 9 S and approx. 15 S, the latter probably representing a precursor of 9 S globin mRNA. A poly (A) sequence was demonstrated in this RNA by two different approaches. Nuclear RNA pulse-labelled with [3H] uridine was fractionated by chromatography on poly (U)-Sepharose. Part of the 15 S precursor was found in the poly(A)-containing RNA. In the second approach 15 S RNA pulse-labelled with [3H]adenosine was hybridized with globin cDNA, incubated with RNAase A and RNAase T1 and subjected to chromatography on hydroxyapatite. The hybrids were isolated and after separation of the strands degraded with DNAase I, RNAase A and RNAase T1. By this procedure poly(A) sequences of approximately 100 nucleotides could be isolated from the 15 S RNA with globin coding sequences. The poly(A) sequence was completely degraded by RNAase T2.  相似文献   

19.
Nuclear RNP complexes, cytoplasmic mRNP particles and free and membrane-bound polysomes were prepared from rat liver and their low-molecular-mass RNA components were analyzed on polyacrylamide/formamide gels. The separated small RNAs transferred to diazophenylthioether paper were hybridized to the nick-translated recombinant plasmid pA6 containing cDNA sequences for the low-Mr RNA called 7S(L) RNA. Nuclear RNP particles and free and membrane-bound polysomes were found to contain 7S(L) RNA. In the cytoplasm 7S(L) RNA could be identified as the major small RNA in 20-S cmRNP particles.  相似文献   

20.
Ribonucleoprotein particles (RNPs) were extracted from monkey cell nuclei in media of low ionic strength. The rapidly labeled RNPs were comparable in terms of size, protein patterns and protein content to those extracted by sonication. The overnight labeled RNPs were homogenous (sedimenting at 60-65S and containing RNA of 30-31S), and appear to be a subset of pre-ribosomal RNPs. This procedure produces nuclear RNPs free of contaminating chromatin. Nuclear RNPs (rapidly-labeled and overnight-labeled RNPs, extracted by either our procedure or by sonication), quantitatively precipitated in 10 mM MgCl2 when the concentration of monovalent cations was low. There was no detectable degradation of the RNA components, nor was there loss of enzymatic activity of an RNP associated protein kinase. Precipitation in Mg++ provides a rapid, gentle and convenient method of concentrating RNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号