首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of rats with T3 resulted in a significant decrease in body weight, while the heart weight increased. T4 treatment had less marked effect on body weights but resulted in decreased heart weights. Serum T4 levels decreased significantly with simultaneous increase of T3 level following T3 treatment, whereas with T4 treatment, levels of both T4 and T3 increased in the serum. Low doses of T3 (0.5 μg ) caused decrease in mitochondrial protein content while high dose of T4 (1 μg), caused significant increase in mitochondrial mass. The state 3 respiration rates were significantly depressed following T3 and T4 treatments, in a substrate specific manner with the effects being more pronounced with T3; these responses with T4 were dose-dependent for succinate and ascorbate + N,N,N′,N′-tetramethyl-p-phenylenedíamme. State 4 respiration rates also exhibited similar corresponding changes. ADP/O ratios were not changed but ADP-phosphorylation rates were decreased significantly particularly so with the T3-treated animals. Treatment with T3 also resulted in lowering of intramitochondrial cytochrome contents. Similar effects were seen also with higher doses of T4. The results thus indicate that T3- and T4- thyrotoxicosis results in impaired energy metabolism in heart mitochondria.  相似文献   

2.
Human heart failure is a complex syndrome and a primary cause of morbidity and mortality in the world. However, the molecular pathways involved in the remodelling process are poorly understood. In this study, we performed exhaustive global proteomic surveys of cardiac ventricle isolated from failing and non-failing human hearts, and determined the regulatory pathway to uncover the mechanism underlying heart failure. Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was used to identify differentially expressed proteins in specimens from failing (n = 9) and non-failing (n = 6) human hearts. A total of 25 proteins with at least 1.5-fold change in the failing heart were identified; 15 proteins were up-regulated and 10 proteins were down-regulated. The altered proteins belong to three broad functional categories: (i) metabolic [e.g. NADH dehydrogenase (ubiquinone), dihydrolipoamide dehydrogenase, and the cytochrome c oxidase subunit]; (ii) cytoskeletal (e.g. myosin light chain proteins, troponin I type 3 and transthyretin) and (iii) stress response (e.g. αB-crystallin, HSP27 and HSP20). The marked differences in the expression of selected proteins, including HSP27 and HSP20, were further confirmed by Western blot. Thus, we carried out full-scale screening of the protein changes in human heart failure and profiled proteins that may be critical in cardiac dysfunction for future mapping.  相似文献   

3.
We show that tetraphenylphosphonium inhibits oxidation of palmitoylcarnitine, pyruvate, malate, 2-oxoglutarate and glutamate in heart mitochondria in the range of concentration (1–5 µM) commonly used for the determination of mitochondrial membrane potential. The inhibition of 2-oxoglutarate (but not other substrate) oxidation by tetraphenylphosphonium is dependent on the concentration of 2-oxoglutarate and on extramitochondrial free calcium, and the kinetic plots are consistent with a mixed type of inhibition. Our results indicate that tetraphenylphosphonium interacts with enzymes, specifically involved in the oxidation of 2-oxoglutarate, most possibly, 2-oxoglutarate dehydrogenase.  相似文献   

4.
Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C‐mol substrate consumed) six times greater than lactate producing cells. Biotechnol. Bioeng. 2013; 110: 660–666. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

6.
大鼠海马的表达蛋白质组学实验研究   总被引:2,自引:0,他引:2  
目的:用蛋白质组学方法初步分析大鼠海马蛋白质的表达。方法:提取大鼠海马蛋白质样品后,用双向凝胶电泳对其分离,经考马斯亮蓝染色后,产生大鼠海马蛋白质双向凝胶电泳图谱。从凝胶上切割分离的蛋白质,经胰蛋白酶胶内酶解,通过基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF-MS)对酶解后的肽段进行分析。根据肽段质谱数据,经数据库(NCBI)检索,对蛋白质进行鉴定。结果:鉴定了37种具有明确功能的蛋白质,它们分别属于代谢酶、细胞骨架蛋白、热休克蛋白、抗氧化蛋白、信号传导蛋白、蛋白酶体相关蛋白、神经元特异蛋白及神经胶质蛋白。另外,鉴定了3种未知功能蛋白。结论:为建立大鼠海马蛋白质组数据库提供必要的资料,为在大鼠模型上研究神经疾病发病机理奠定基础。  相似文献   

7.
A protein-gene linkage map of the cyanobacterium Anabaena sp. strain PCC7120 was successfully constructed for 123 relatively abundant proteins. The total proteins extracted from the cell were resolved by two-dimensional electrophoresis, and the amino-terminal sequences of the protein spots were determined. By comparing the determined amino-terminal sequences with the entire genome sequence, the putative translation initiation sites of 87 genes were successfully assigned on the genome. The elucidated sequence features surrounding the translation initiation sites were as follows: (1) GTG and TTG in addition to the ATG were used as rare initiation codons; (2) the core sequences (GAGG, GGAG and AGGA) of the Shine-Dalgarno sequence were identified in the appropriate position preceding the 51 initiation sites (58.6%); (3) the nucleotides at the two regions, from -35 to -33, and from -19 to -17 (relative to the first nucleotide in the initiation codon) were preferentially adenines or thymines; (4) the nucleotides at the region from -14 to -8 were preferentially purines; (5) the nucleotide at position -1 was biased towards non-guanine (96.6%); (6) the nucleotide at the position +5 was preferentially cytosine (63.2%). It was evident that removal of the translation initiator methionine was dependent on the side-chain bulkiness of the penultimate amino acid residue. The predicted putative signal peptide sequences were also indicated. Besides confirming the existence of many predicted proteins, the data will serve as a starting point for the study of signals important in post-translational processing and nucleotide sequences important in the initiation of translation.  相似文献   

8.
A fraction of the so-called mitochondrial soluble proteins was obtained after the destruction of purified mitochondria by sonication according to the previously found approach to the identification of protein subsets of the Bos taurus heart proteome. A tryptic destruction of these proteins was achieved. Approximately half of the tryptic hydrolysate was separated into two fractions of cysteine-containing and cysteine-free peptides by covalent chromatography on Thiopropyl Sepharose 4B. The cysteine-containing peptides were modified by iodoacetamide. The peptides were mass-spectrometrically identified in all the three fractions of tryptic hydrolysate, and the proteins were searched for in the amino acid sequence databases. There were 213 unique proteins reliably identified.  相似文献   

9.
The effects of several short-chain mercapto acids on the rate of respiration supported by either palmitoylcarnitine, octanoate, or pyruvate was studied with coupled rat heart mitochondria. 3-Mercaptopropionic acid was found to be a potent inhibitor of respiration sustained by palmitoylcarnitine or octanoate, whereas under identical conditions respiration with pyruvate as a substrate was unaffected. 2-Mercaptoacetic acid also inhibits palmitoylcarnitine-supported respiration, but only at much higher concentrations of the inhibitor. 2-Mercaptopropionic acid has virtually no effect. Incubation of mitochondria with 3-mercaptopropionic acid did not cause the irreversible inactivation of any beta-oxidation enzyme. Since 3-mercaptopropionic acid did not inhibit beta-oxidation in uncoupled mitochondria, it appears that this compound must first be metabolized in an energy-dependent reaction before it becomes inhibitory. 3-Mercaptopropionyl-CoA and three of its S-acyl derivatives, all of which are likely mitochondrial metabolites of 3-mercaptopropionic acid, were tested for their capacity to inhibit the individual enzymes of beta-oxidation. 3-Mercaptopropionyl-CoA inhibits only acyl-CoA dehydrogenase, whereas S-myristoyl-3-mercaptopropionyl-CoA inhibits reversibly several beta-oxidation enzymes. All observations together lead us to suggest that the inhibition of beta-oxidation by 3-mercaptopropionic acid in coupled rat heart mitochondria is most likely a consequence of the reversible inhibition of acyl-CoA dehydrogenase by long-chain S-acyl-3-mercaptopropionyl-CoA thioesters and possibly by 3-mercaptopropionyl-CoA.  相似文献   

10.
11.
The isolated working rat heart is a useful experimental model which allows contractile function to be measured in hearts perfused at physiologically relevant workloads. To maintain these high workloads the heart is required to generate a tremendous amount of energy. In vivo this energy is derived primarily from the oxidation of fatty acids. In many experimental situations it is desirable to perfuse the isolated working heart in the presence of physiologically relevant concentrations of fatty acids. This is particularly important when studying energy metabolism in the heart, or in determining how fatty acids alter the outcome of myocardial ischemic injury [1, 2]. The other major source of energy for the heart is derived from the oxidation of carbohydrates (glucose and lactate), with a smaller amount of ATP also being derived from glycolysis. Two byproducts of both fatty acid and carbohydrate metabolism are H2O and CO2. By labeling the glucose, lactate, or fatty acids in the perfusate with 3H or 14C the experimenter can quantitatively collect either 3H2O or 14CO2 produced by the heart. By using radioisotopes that are labeled at specific hydrogen or carbon molecules on the various energy substrates, and by knowing the specific activity of the radiolabeled substrate used, it is possible to determine the actual rate of flux through these individual pathways. This paper will describe the experimental protocols for directly measuring fatty acid and carbohydrate metabolism in isolated working rat hearts.  相似文献   

12.
13.
14.
15.
Changes in fatty acid composition of myocardial lipids were examined in rats with heart failure following myocardial infarction. Left ventricular systolic pressure (LVSP) was decreased and left ventricular end-diastolic pressure (LVEDP) was elevated 24 h, 1 and 12 weeks after left coronary artery ligation (CAL), suggesting the development of heart failure at these periods in this model. Hearts were isolated 24 h, 1 week and 12 weeks after the operation. Myocardial lipids in the infarcted scar tissue, non-infarcted remaining left ventricle including interseptum and right ventricle were separated into phospholipid (PL), triacylglycerol (TG), diacylglycerol (DAG) and free fatty acid (FFA) fractions. In the scar tissue PL content markedly decreased whereas TG, DAG and FFA contents increased 24 h after CAL. Despite a marked decrease in constituted fatty acids of PL fraction in the scar tissue the percentage of arachidonic acid in PL was elevated 12 weeks after CAL, suggesting that release of arachidonic acid during PL degradation was suppressed. In the non-infarcted viable left ventricle PL content remained unchanged throughout the experiment whereas TG, DAG and FFA contents were elevated 24 h after CAL. Despite no changes in PL and other lipid contents in the non-infarcted tissue the percentage of linoleic acid in PL was reduced and that of docosahexaenoic acid in PL was elevated 12 weeks after CAL. Our findings showed that myocardial lipid composition of the non-infarcted left ventricle was altered only in an early stage of the development of heart failure and fatty acid compositions of PL was exchanged in a late stage of the development of heart failure. The exchange may be related to cardiac dysfunction or myocardial remodelling in the rat with heart failure.  相似文献   

16.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

17.
Organ failure induced by endotoxic shock has recently been associated with affected mitochondrial function. In this study, effects of in vivo lipopolysaccharide-challenge on protein patterns of rat liver mitochondria in treated animals versus controls were studied by two-dimensional electrophoresis (differential image gel electrophoresis). Significant upregulation was found for ATP-synthase alpha chain and superoxide dismutase [Mn]. Our data suggest that endotoxic shock mediated changes in the mitochondrial proteome contribute to a compensatory reaction (adaptation to endotoxic shock) rather than to a mechanism of cell damage.  相似文献   

18.
19.
20.
Here, we demonstrate the application of the proteomic approach to the study of a transgenic mouse model of heart failure and provide an example of a disease-associated protein alteration that can be observed using this approach. Specifically, we applied the proteomic approach to the analysis of a mouse model of dilated cardiomyopathy in which the small GTPase, Rac1, was constitutively expressed specifically in the myocardium. We utilized the methods of two-dimensional gel electrophoresis (2-DE) for protein separation, silver-staining for protein visualization and mass spectrometry (MALDI-TOF and MS/MS) for protein spot identification. Computer-generated composite images were created which represent a normalized average of four 2-DE gel images derived from analysis of either Rac1 transgenic (n = 4) or non-transgenic (n = 4) mice. Analysis of composite images derived from NTG and Rac1 experimental groups revealed numerous statistically significant differences in mean protein spot intensities. Here, we report a statistically significant increase, of approximately 1.6-fold, in the mean protein spot intensity for creatine kinase M-chain in the composite image of Rac1 transgenic mice compared to control. This protein alteration may be consistent with an end-stage heart failure phenotype in which maximal myocardial reserve is employed to sustain survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号