首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An earthworm, Lumbricus rubellus, produces alkaline serine proteases that are greater than trypsins in their activity and stability. The proteases which were purified from the earthworm were composed of six isozyme proteins. Each isozyme consisted of a single polypeptide chain which was derived from the different genes. The enzymes had activity and were stable at below 60 °C over a wide range of pH 2–11 and were strongly resistant to organic solvents and detergents. Moreover, they retain full activity for long years at room temperature. They acted on various proteins, such as elastin as well as fibrin, and some peptides, such as β-amyloid 1–40 and solubilized actual fibrin clots of whole blood in a rat’s vena cava. They also catalyzed the hydrolysis of various esters. The cDNAs encoding the proteases were cloned and sequenced. They showed similarity to mammalian serine proteases and conserved the catalytic amino acid residues, however, neither arginine nor lysine residues were present in the autolysis region. The gene encoding the native form of an isozyme protein was expressed in Pichia pastoris to produce the active protease in the culture medium. The proteases contributed to the production of the “earthworm autolysate”. The extracts of the autolysate could be used as a “peptone substitute” in media for the efficient growth of microorganisms.  相似文献   

2.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

3.
A polygalacturonase (PG) isozyme was isolated from Penicillium solitum-decayed Anjou pear fruit and purified to homogeneity with a multistep process. Both gel filtration and cation exchange chromatography revealed a single PG activity peak, and analysis of the purified protein showed a single band with a molecular mass of 43 kDa, which is of fungal origin. The purified enzyme was active from pH 3.5-6, with an optimum at pH 4.5. PG activity was detectable 0-70 C with 50 C maximum. The purified isozyme was inhibited by the divalent cations Ca(2+), Mg(2+), Mn(2+) and Fe(2+) and analysis of enzymatic hydrolysis products revealed polygalacturonic acid monomers and oligomers. The purified enzyme has an isoelectric point of 5.3 and is not associated with a glycosylated protein. The PG isozyme macerated fruit tissue plugs in vitro and produced ~1.2-fold more soluble polyuronides from pear than from apple tissue, which further substantiates the role of PG in postharvest decay. Data from this study show for the first time that the purified PG produced in decayed Anjou pear by P. solitum, a weakly virulent fungus, is different from that PG produced by the same fungus in decayed apple.  相似文献   

4.
蚯蚓纤溶酶的纯化及稳定性研究   总被引:4,自引:0,他引:4  
蚯蚓纤溶酶(EPA)抽提液经30% ~70% 饱和度的(NH4)2SO4 盐析、DEAE—纤维素柱层析、Sephadex G-75葡聚糖凝胶过滤等纯化步骤,得到了具有纤溶活性的洗脱峰,置凝胶电泳后,得到四个活性组分,它们经50℃保温6h,活力上升64% ;在2 m ol/L盐酸胍存在时,活力仅保存7.2% ,当其浓度降低时,活力可恢复至90% ;在1% SDS存在时,活力仅保存12.1% ,但当SDS除去时,活力又可恢复。因此,盐酸胍、SDS均为EPA 可逆性抑制剂。另外,EPA 中含有较高的糖链(占总量的45% ),具有良好的抵抗自水解作用。  相似文献   

5.
Carboxylesterase was purified from rat kidney in an electrophoretically homogeneous form by acetone precipitation, followed by successive chromatographies on DEAE-cellulose and hydroxyapatite and then isoelectric focusing. The purified enzyme catalyzed the hydrolyses of monoacylglycerols and short-chain triacylglycerols, such as tributyrin, but not the hydrolysis of long-chain triacylglycerol. Its optimum pH with methyl butyrate as a substrate was 8.0. The relation of its activity to the methyl butyrate concentration differed from those for pancreatic lipase and liver esterase, and also from those for lipolytic enzymes from various other tissues. The relations of methyl butyrate-hydrolyzing activity with methyl butyrate concentration were compared among various carboxylester hydrolyzing enzymes. Based on the results, these enzymes were classified into four classes.  相似文献   

6.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

7.
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.  相似文献   

8.
Two isozymes of phosphoinositide-specific phospholipase C were isolated and purified from salt-washed rabbit brain membranes. The membranes were extensively washed with isotonic, hypertonic and hypotonic buffers prior to solubilization with sodium cholate. Two isozymes (PLC-IV and PLC-beta m) were purified by a combination of DEAE-Sephacel, AH-Sepharose, heparin-Sepharose, AcA-34 gel filtration and mono-Q FPLC chromatographies. The major activity (PLC-beta m) was purified to homogeneity and had an estimated molecular weight of 155,000 on sodium-dodecyl sulfate-polyacrylamide gels (SDS-PAGE). This isozyme was immunologically identified as PLC-beta, an isozyme previously characterized in bovine brain cytosol and 2 M KCl membrane extracts. A second isozyme, PLC-IV, was immunologically distinct from PLC-beta and PLC-gamma and was purified to a stage where three protein bands (Mr 66,000, 61,000 and 54,000) on SDS-PAGE correlated with enzyme activity. The catalytic properties of the isozymes were studied and found to be very similar. The specific activities for PIP2 were greater than those obtained when PI was used. Both PLC-IV and PLC-beta m were Ca2(+)-dependent; near maximal stimulation for PI and PIP2 hydrolysis was observed at 0.5 microM free Ca2+. Sodium pyrophosphate and sodium fluoride stimulated phospholipase C activity of both isozymes. Polyclonal antibodies raised against PLC-beta m were able to inhibit carbachol and GTP gamma S stimulated phospholipase C activity in 2 M KCl washed rabbit cortical membranes. This suggests that in rabbit brain muscarinic cholinergic stimulation regulates PLC-beta m.  相似文献   

9.
Lipase activity towards triacylglycerol and diacylglycerol was measured at pH 4.8 using a microsomal preparation from rat brain as the enzyme source. The optimal pH for the hydrolysis of triacylglycerol was 4.8, with only minor lipolytic activity in the alkaline pH range. Diacylglycerol was the major product of triacylglycerol hydrolysis, with only little monoacylglycerol being formed. When diacylglycerol was the starting substrate it was hydrolyzed at a rate 10-fold greater than triacylglycerol, and the product was monoacylglycerol. The enzyme showed positional specificity for the fatty acid moieties located at the primary positions of sn-glycerol. 1,3-Diacylglycerol was hydrolyzed at greater than twice the rate of the corresponding 1,2(2,3)-isomer.  相似文献   

10.
Stable and potent fibrinolytic enzymes (six homogeneous proteins) were purified to homogeneity from extracts of the lyophilized powder of an earthworm, Lumbricus rubellus. The molecular weight of each enzyme estimated by SDS–polyacrylamide gel electrophoresis was different from those by gel filtration chromatography in the six purified proteins. The exact molecular weight of each enzyme (F-III-2, F-III-1, F-II, F-I-2, F-I-l, and F-I-0) measured by ionspray MS analysis was 29, 662, 29, 667, 24, 664, 24, 220, 24, 196, and 23,013, respectively. The isoelectric point (pI) of each enzyme was 3.40, 3.60, 4.20, 4.00, 4.30, and 4.85, respectively. The enzymes were single polypeptide chains. They had a very strong fibrinolytic activity and the maximum reactivity for chromogenic substrates from pH 9-11. The enzymes, acidic proteins that had abundant asparagine and aspartic acid, and low lysine in their amino acid composition, did not contain component sugars. The enzymes were stable at from pH 1-11 and up to 60°C. Studies on substrate specificity and inhibition indicated that these enzymes were alkaline trypsin-like serine proteases. N-Terminal amino acid sequences of the enzymes had local similarities to those of trypsin-like enzymes such as elastase and coagulation factor IX. From the results of amino acid sequence, amino acid composition analyses and immunological analyses, it was suggested that these six enzyme proteins were derived as isozyme(s) from at least four different genes.  相似文献   

11.
蚯蚓纤溶酶的分离纯化及部分序列的测定   总被引:1,自引:0,他引:1  
以新鲜蚯蚓为原料,经过保温抽提、乙醇沉淀、DEAE-SepharoseFastFlow离子交换层析、Lysine-Sepharose4B亲和层析以及SDS-PAGE制备电泳等纯化步聚,得到一种纯度达95%以上的蚯蚓纤溶酶.该酶具有强烈的溶解纤维蛋白的作用及蛋白酶活性,平板法测得其比活性为90OUK单位/毫克蛋白,TAME法测得其比活性为2500O单位/毫克蛋白.酶学性质研究表明其最适反应温度为65℃,最适反应PH值为8.5.该酶的分子量为33kD,等电点为pH3.5.还对该酶进行了氨基酸组成分析,并测定了其N端部分序列.  相似文献   

12.
The concerted action of purified bovine gastric lipase and human pancreatic colipase-dependent lipase and colipase, or crude human pancreatic juice, in the digestion of human milk triacylglycerols was explored in vitro. Gastric lipase hydrolyzed milk triacylglycerol with an initially high rate but became severely inhibited already at low concentration of released fatty acid. In contrast, colipase-dependent lipase could not, by itself, hydrolyze milk triacylglycerol. However, a short preincubation of milk with gastric lipase, resulting in a limited lipolysis, made the milk fat triacylglycerol available for an immediate and rapid hydrolysis by pancreatic juice, and also for purified colipase-dependent lipase, provided colipase and bile salts were present. The same effect was obtained when incubation with gastric lipase was replaced by addition of long-chain fatty acid. Long-chain fatty acid increased the binding of colipase-dependent lipase to the milk fat globule. Binding was efficient only in the presence of both fatty acid and colipase. We conclude that a limited gastric lipolysis of human milk triacylglycerol, resulting in a release of a low concentration of long-chain fatty acids, is of major importance for the subsequent hydrolysis by colipase-dependent lipase in the duodenum.  相似文献   

13.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

14.
We have studied the substrate preference and specificity, including positional specificity, of a lipase purified from Staphylococcus aureus (strain FN 37). This extracellular bacterial enzyme is relatively insensitive to product inhibition, and hydrolyzes tri-, di- and monooleoylglycerol in emulsified and micellar form at similar rates and without marked substrate preference. The lipase lacks positional specificity, and the hydrolysis of triacylglycerol proceeds rapidly to free fatty acid and glycerol without accumulation of intermediary products.  相似文献   

15.
In an incubation system in vitro with fully activated Intralipid as substrate, rat high-density lipoprotein inhibits the hydrolysis of triacylglycerol by lipoprotein lipase from rat adipose tissue, but does not inhibit hydrolysis by the enzyme from bovine milk. The pattern of inhibition suggests that substrate and high-density lipoprotein may compete for association with rat adipose-tissue lipoprotein lipase.  相似文献   

16.
A monolayer technique was used to study the substrate specificity of hepatic lipase (HL) and the effect of surface pressure and apolipoproteins on hydrolysis of lipid monolayers by this enzyme. HL hydrolyzed readily phosphatidylethanolamine monolayers. Pure trioctanoylglycerol was found to be a poor substrate but when progressively diluted with nonhydrolyzable 1,2-didodecanoylphosphatidylcholine hydrolysis of triacylglycerol by HL reached maximum at a molar ratio of 1:1 triacylglycerol to phosphatidylcholine. The activation of triacylglycerol hydrolysis was not due to altered penetration of HL. The surface pressure optimum of HL for the hydrolysis of phosphatidylethanolamine monolayers was broad between 12.5 and 25 mN/m. When apolipoprotein E was injected beneath the monolayer of phosphatidylethanolamine prior to enzyme addition, a 3-fold activation of HL was observed at surface pressures equal to or below 15 mN/m. Below surface pressures of 20 mN/m apolipoprotein E did not affect the penetration of HL into the lipid-water interface. Apolipoprotein E slightly activated the hydrolysis of triacylglycerol by HL at 10 mN/m. At a high surface pressure of 25 mN/m all apolipoproteins tested (apolipoproteins A-I, A-II, C-I, C-II, C-III, and E) inhibited the penetration into and HL activity on phosphatidylethanolamine At 18.5 mN/m all apolipoproteins except apolipoprotein E inhibited the hydrolysis of triacylglycerol in the triacylglycerol:phosphatidylcholine mixed film. Based on these results we present a hypothesis that phospholipid present in apolipoprotein E-rich high density lipoprotein-1 and triacylglycerol in intermediate density lipoprotein would be preferred substrates for HL.  相似文献   

17.
Antibodies against purified NADP-isocitrate dehydrogenase from pig liver cytosol and pig heart were raised in rabbits. The purified enzymes from these sources are different proteins, as demonstrated by differences in electrophoretic mobility and absence of crossreactivity by immunotitration and immunodiffusion. The NADP-isocitrate dehydrogenase in the soluble supernatant homogenate fraction from pig liver, kidney cortex, brain and erythrocyte hemolyzate was identical with the purified enzyme from pig liver cytosol, as determined by electrophoretic mobility and immunological techniques. The enzyme in extracts of mitochondria from pig heart, kidney, liver and brain was identical with the purified pig heart enzyme by the same criteria. However, the 'mitochondrial' isozyme was the major component also in the soluble supernatant fraction of pig heart homogenate. The 'cytosolic' isozyme accounted for only 1-2% of total NADP-isocitrate dehydrogenase in pig heart, as determined by separation of the isozymes with agarose gel electrophoresis and immunotitration. The mitochondrial isozyme was also the predominant NADP-isocitrate dehydrogenase in porcine skeletal muscle. The ratio of cytosolic/mitochondrial isozyme for porcine whole tissue extract, determined by immunotitration, was about 2 for liver and 1 for kidney cortex and brain. The distribution of isozymes in cell homogenate fractions from ox and rat tissues corresponded to that observed in organs of porcine origin. The mitochondrial and cytosolic isozymes from ox and rat tissues exhibited crossreactivity with the antibodies against the pig heart and pig liver cytosol enzyme, respectively, and the electrophoretic migration patterns were similar qualitatively to those found for the isozymes in porcine tissues. Nevertheless, there were species specific differences in the characteristics of each of the corresponding isozymes. NAD-isocitrate dehydrogenase was not inhibited by the antibodies, confirming that the protein is distinct from that of either isozyme of NADP-isocitrate dehydrogenase.  相似文献   

18.
为获得一种高效的溶栓药物。从赤子爱胜蚓(Eiseniafoelida)中分离纯化得到了一种纤溶酶组分。用Lowry法测定蛋白质浓度,SDSPAGE鉴定纯度为98%,表观相对分子质量(Mr)为14850,纤维蛋白平板法测定其总纤溶活性为65.51×103mm2/mg,直接纤溶活性为15.61×103mm2/mg,间接纤溶活性为26.34×103mm2/mg。水解BAEE的米氏常数(Km)为1.82×105mol/L。水解ChromozymPL的米氏常数(Km)3.98×105mol/L,水解ChromozymtPA的米氏常数(Km)5.55×105mol/L活性,N端氨基酸序列测定的结果为VIGGTNAIPGEFPYQ。结果表明该纤溶酶分子量较小,间接活性较高,适宜作为一种新型的溶栓药物。  相似文献   

19.
Lipase [triacylglycerol lipase, EC 3.1.1.3] has been purified to homogeneity from Rhizopus japonicus NR 400 by chromatography on hydroxylapatite, octyl-Sepharose and Sephacryl S-200. It showed a molecular weight of about 30,000 by SDS-PAGE and a specific activity of 68,900 units/mg protein. The enzyme catalyzed the hydrolysis of tricapryn and tricaprylin rapidly in comparison with other triglycerides. This lipase had an optimum pH of around 5, and albumin enhanced its activity between pH 3 and 8. The composition of fatty acids liberated from linseed oil by the lipase was similar to that in the case of pancreatic lipase. The lipase activity was not affected by the addition of 1 mM metal ions or bile salts. Stimulation of the lipase activity was observed upon addition of albumin to the reaction mixture. Immunotitration experiments were also performed with antibodies raised against the purified lipase.  相似文献   

20.
Aldehyde dehydrogenase (EC 1.2.1.3) has been purified from human brain; this constitutes the first purification to homogeneity from the brain of any mammalian species. Of the three isozymes purified two are mitochondrial in origin (Peak I and Peak II) and one is cytoplasmic (Peak III). By comparison of properties, the cytoplasmic Peak III enzyme could be identified as the same as the liver cytoplasmic E1 isozyme (N.J. Greenfield and R. Pietruszko (1977) Biochim. Biophys. Acta 483, 35-45). The Peak I and Peak II enzymes resemble the liver mitochondrial E2 isozyme, but both have properties that differ from those of the liver enzyme. The Peak I enzyme is extremely sensitive to disulfiram while the Peak II enzyme is totally insensitive; liver mitochondrial E2 isozyme is partially sensitive to disulfiram. The specific activity is 0.3 mumol/mg/min for the Peak I and 3.0 mumol/mg/min for the Peak II enzyme; the specific activity of the liver mitochondrial E2 isozyme is 1.6 mumol/min/mg under the same conditions. The Peak I enzyme is also inhibited by acetaldehyde at low concentrations, while the Peak II enzyme and the liver mitochondrial E2 isozyme are not inhibited under the same conditions. The precise relationship of brain Peak I and II enzymes to the liver E2 isozyme is not clear but it cannot be excluded at the present time that the two brain mitochondrial enzymes are brain specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号