首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we showed that the southern green stink bug (SGSB), Nezara viridula (L.), can transmit Pantoea agglomerans (Ewing and Fife), an opportunistic bacterium, into green cotton bolls resulting in plant disease. Here, we hypothesized that our established model could be used to determine if the SGSB was a general, non-discriminate vector by using two other opportunistic bacterial pathogens of bolls (Pantoea ananatis [Serano] and Klebsiella pneumoniae [Schroeter]) and the known fungal pathogen Nematospora coryli (Peglion). Variants of P. ananatis (strain Pa-1R) and K. pneumoniae (strain Kp 5-1R) selected for rifampicin (Rif) resistance were used as bacterial opportunists. N. coryli was detected only from laboratory-reared SGSB directly exposed to the fungus. Both Pa-1R and Kp 5-1R were recovered from SGSB previously provided a contaminated food source (2 days), sterile food (5 days), and then harvested after being caged on bolls (2 days) at levels reaching 103 and 104 colony forming units (cfus) per insect, respectively. However, bolls caged with insects infected with Pa-1R or Kp 5-1R and with evidence of feeding did not become diseased nor were either opportunists detected from boll tissues. Insects infected with N. coryli transmitted the pathogen, which resulted in diseased bolls and fungi concentrations reached 106 cfus/g locule tissue at 2 weeks following the caging period. Notably, each of the three pathogens independently caused boll disease when mechanically inoculated using a needle puncture. Generally, these results suggest that cotton pathogen acquisition by the SGSB was not sufficient to determine whether the insects were disease vectors of the opportunists.  相似文献   

2.
Bacteria of the genus Pantoea have become important plant pathogens worldwide in recent years. Pantoea ananatis was reported as the cause of maize white spot, a serious maize disease in Brazil, causing significant yield losses. However, very little information is available about how to detect this pathogen, its genetic variability and the putative alternative hosts in maize‐growing areas. To address these issues, we implemented a rapid and efficient PCR‐based method to identify P. ananatis isolated from leaves showing white spot symptoms and evaluated its genetic diversity in maize, sorghum and crabgrass. Of the 29 bacteria isolated from typical water‐soaked lesions of white spot disease that produced yellow colonies, 15 isolates were identified as P. ananatis by 16S rDNA sequencing and correctly detected by the PCR reaction, amplifying a specific fragment of the ice nucleation gene (ina). These P. ananatis isolates included 13 from maize, one from sorghum and one from crabgrass, while the other 14 yellow colony isolates were from other bacterial species, including two Pantoea species (Pantoea dispersa and Pantoea agglomerans) that were not amplified by the ina primers. These results indicate that the optimized PCR assay can be used to detect P. ananatis isolated from white spot lesions and could be used as a large‐scale and cost‐effective method of detecting this pathogen in leaf lesions on maize and other grasses. All isolates were evaluated for hypersensitive response (HR) on tobacco, revealing that some P. ananatis were able to induce HR. The high genetic variability revealed by rep‐PCR did not differentiated the P. ananatis isolates based on their hosts or HR reaction. The detection, characterization and diversity of P. ananatis from maize, sorghum and crabgrass in our study can be applied in understanding epidemiology and designing control strategies for maize white spot disease in Brazil.  相似文献   

3.
Aims: To optimize the medium components for the production of indole‐3‐acetic acid (IAA) by isolated bacterium Pantoea agglomerans strain PVM. Methods and Results: Present study deals with the production of an essential plant hormone IAA by a bacterial isolate P. agglomerans strain PVM identified by 16S rRNA gene sequence analysis. The medium containing 8 g l?1 of meat extract and 1 g l?1 of l ‐tryptophan (precursor) at optimum pH 7, 30°C and 48‐h incubation gave the maximum production of IAA (2·191 g l?1). Effect of IAA synthesized on in vitro root induction in Nicotiana tobacum (leaf) explants was compared with that of control. IAA was characterized by high‐performance thin‐layer chromatography, high‐performance liquid chromatography and gas chromatography–mass spectroscopy. Conclusions: Pantoea agglomerans strain PVM was a good candidate for the inexpensive and utmost production of IAA in short period, as it requires simple medium (meat extract and l ‐tryptophan). Significance and Impact of the Study: The present report first time showed the rapid, cost‐effective and maximum production of IAA. No reports are available on the optimization of particular medium components for the production of IAA. This study demonstrates a novel approach for in vitro root induction in N. tobacum (leaf) explants.  相似文献   

4.
An endophytic bacterium isolated from banana G-9 (AAA genotype) leaves exhibited strong antagonistic activity against Mycosphaerella musicola. The isolate was identified as Pantoea ananatis 4G-9 by 16S rRNA sequence analysis. Secondary metabolite obtained from P. ananatis 4G-9 was found to have antifungal activity. The active compound was purified from crude extract using column chromatography. Purity of the active compound was assessed using high-performance liquid chromatography. Spectral analysis of compound using infrared, mass spectrometry and nuclear magnetic resonance indicated that the compound structure is an indole derivative. The compound showed strong and dose-dependent antifungal activity against M. musicola. This is the first report on P. ananatis isolated as an endophyte from banana leaves and its antifungal activity against M. musicola.  相似文献   

5.
The growth conditions ofPantoea agglomerans, a phosphate solubilizing organism, were studied in our laboratory to determine the optimal conditions.Pantoea agglomerans showed the highest growth rate at 30°C, pH 7.0 and 2 vvm, after 50 h cultivation. A certain relationship between pH and phosphate concentration, was evident when the glucose concentration in the medium was changed. Increasing glucose concentration increased the pH buffer action of the broth. At glucose concentrations higher than the optimum concentration of 0.2 M, the cell growth was retarded.P. agglomerans consumed glucose as a substrate to produce organic acids which caused the pH decrease in the culture medium. The phosphate concentration in the medium was increased by the presence of the organic acids, which solubilized insoluble phosphates such as hydroxyapatite.  相似文献   

6.
The aim of this work was to optimize acid stress conditions for induction of acid tolerance response (ATR) in the biocontrol agent Pantoea agglomerans and study the effect of ATR induced on the ability to survive under acidic conditions. Initially, Pantoea agglomerans was grown in mild acidic conditions (pH 6.0, 5.5, 5.0 and 4.0) in order to induce ATR. The highest ATR was induced at initial pH of 5 using malic or citric acid. A first in vitro experiment was carried out. Thus, basal liquid medium at different pHs (3.0, 3.5, 4.0 and non-acidified) were then inoculated with acid-adapted and non-adapted inocula of P. agglomerans and survivals were examined during incubation at 25 or 4 °C. It was found that acid adaptation enhanced the survivals of Pantoea agglomerans CPA-2 cells at pH levels at which the cells were unable to grow (<3.5 and 4.0, at 25 and 4 °C, respectively). In contrast, in pH levels at which the cells were able to grow (pH 4.0 at 25 °C and non-acidified medium at 25 and 4 °C) no-differences were found between adapted and non-adapted cells. In in vivo tests, adapted and non-adapted cells were inoculated in wounds on mandarins and pome fruits. No differences were found between adapted and non-adapted cells and biocontrol efficacy was maintained. The present study demonstrated that exposure of Pantoea agglomerans to mild acidic conditions could induce acid resistance in this biocontrol agent.  相似文献   

7.
Pantoea ananatis is a widespread phytopathogen with a broad host range. Despite its ability to infect economically important crops, such as maize, rice and onion, relatively little is known about how this bacterium infects and colonizes host tissue or spreads within and between hosts. To study the role of motility in pathogenicity, we analysed both swimming and twitching motility in P. ananatis LMG 20103. Genetic recombineering was used to construct four mutants affected in motility. Two flagellar mutants were disrupted in the flgK and motA genes, required for flagellar assembly and flagellar rotation, respectively. Similarly, two twitching motility mutants were generated, impaired in the structure (pilA) and functioning (pilT) of the type IV pili. The role of swimming and twitching motility during the infection cycle of P. ananatis in onion seedlings was determined by comparing the mutant‐ and wild‐type strains using several in vitro and in planta assays. From the results obtained, it was evident that flagella aid P. ananatis in locating and attaching to onion leaf surfaces, as well as in pathogenicity, whereas twitching motility is instrumental in the spread of the bacteria on the surface once attachment has occurred. Both swimming and twitching motility contribute towards the ability of P. ananatis to cause disease in onions.  相似文献   

8.
A new indigenous soil bacterium Pantoea strain NII-153 utilizing phenol as a sole carbon source was isolated and characterized. Phylogenetic analysis suggested its classification to the Enterobacteriaceae family, with 95.0% gene sequence similarity to Pantoea ananatis ATCC 33244. Biodegradation rates of phenol by NII-153 were found to be more effective at 64 h with initial concentration of 600 mg L? 1 of phenol and this is the first report of such activity in Pantoea species. Strain NII-153 has showed high tolerance to phenol concentration (900 mg L? 1). Therefore, strain NII-153 could be used for biotreatment of high-strength phenol-containing industrial effluents and for bioremediation of phenol-contaminated soils.  相似文献   

9.
10.
Plant pathogenic organisms are known to infect host cell using various range of secretory proteins. Amongst all other secretion systems, type III secretion system (T3SS) is a key mechanism for bacterial pathogenesis for establishing and maintaining infection into the host. Expression levels of seven genes viz. avrXacE1, avrXacE2, hpaA and hrpG along with bacterial endogenous control lrp (leucine-responsive protein) were studied. The pathogenic organisms selected for the present study includes Enterobacter cloacae, Enterobacter spp., Pantoea ananatis, Xanthomonas campestris pv. Citri, Pantoea agglomerans, Ochrobactrum anthropi and Erwinia chrysanthemi. P. agglomerans and Enterobacter spp. gave high expression of above-mentioned virulence genes compared to Xanthomonas, while E. cloacae and P. ananatis showed similar expression with that of Xanthomonas. The detailed relationship of the expression profiles with respect to the selected organisms is discussed.  相似文献   

11.
Southern green stink bugs, Nezara viridula (L.) (Hemiptera: Pentatomidae), and related species are significant pests of cotton, Gossypium hirsutum L. (Malvaceae), in the USA Cotton Belt. Using their stylets, adults introduce pathogens of cotton into cotton bolls, and preliminary data indicate nymphs can also ingest these pathogens. However, data are lacking regarding stylet penetration potential of N. viridula nymphs, and records of stylet penetration by adults are typically determined after damage has occurred. In this study, rostral segments of all developmental stages of N. viridula were measured to estimate potential stylet penetration depth using a novel mathematical model. Overall mean stylet penetration estimates for all stages ranged from 135.3 μm for first instars to 2 389.3 μm for adult females. Potential stylet penetration significantly increased as the insect progressed through nymphal stages. Penetration was also significantly affected by insect posture while feeding. Overall minimum and maximum observed lengths of rostrum ranged from 835.3 μm (first instars) to 7 088.2 μm (adult females), and mean rostral lengths were significantly different between all stages. This report establishes conservative baselines of potential stylet penetration depths by all nymphal stages and both adult sexes of N. viridula. Additionally, the model presented here can be used to estimate potential stylet penetration for other Hemiptera and closely related insects with similar modes of feeding. In conjunction with crop phenology data, accurate estimates of potential stylet penetration will allow more proactive approaches to pest management in a wide range of high‐value cash crops affected worldwide by N. viridula.  相似文献   

12.
The lycopene synthetic pathway was engineered in Escherichia coli using the carotenoid genes (crtE, crtB, and crtI) of Pantoea agglomerans and Pantoea ananatis. E. coli harboring the P. agglomerans crt genes produced 27 mg/l of lycopene in 2YT medium without isopropyl-beta-d-thiogalactopyranoside (IPTG) induction, which was twofold higher than that produced by E. coli harboring the P. ananatis crt genes (12 mg/l lycopene) with 0.1 mM IPTG induction. The crt genes of P. agglomerans proved better for lycopene production in E. coli than those of P. ananatis. The crt genes of the two bacteria were also compared in E. coli harboring the mevalonate bottom pathway, which was capable of providing sufficient carotenoid building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), with exogenous mevalonate supplementation. Lycopene production significantly increased using the mevalonate bottom pathway and 60 mg/l of lycopene was obtained with the P. agglomerans crt genes, which was higher than that obtained with the P. ananatis crt genes (35 mg/l lycopene). When crtE among the P. ananatis crt genes was replaced with P. agglomerans crtE or Archaeoglobus fulgidus gps, both lycopene production and cell growth were similar to that obtained with P. agglomerans crt genes. The crtE gene was responsible for the observed difference in lycopene production and cell growth between E. coli harboring the crt genes of P. agglomerans and P. ananatis. As there was no significant difference in lycopene production between E. coli harboring P. agglomerans crtE and A. fulgidus gps, farnesyl diphosphate (FPP) synthesis was not rate-limiting in E. coli. Sang-Hwal Yoon and Ju-Eun Kim: These authors contributed equally to this work.  相似文献   

13.
High-pressure liquid chromatography (HPLC) analysis established myo-inositol pentakisphosphate as the final product of phytate dephosphorylation by the phytate-degrading enzyme from Pantoea agglomerans. Neither product inhibition by phosphate nor inactivation of the Pantoea enzyme during the incubation period were responsible for the limited phytate hydrolysis as shown by addition of phytate-degrading enzyme and phytate, respectively, after the observed stop of enzymatic phytate degradation. In additon, the Pantoea enzyme did not possess activity toward the purified myo-inositol pentakisphosphate. Using a combination of High-Performance Ion Chromatography (HPIC) analysis and kinetic studies, the nature of the generated myo-inositol pentakisphosphate was established. The data demonstrate that the phytate-degrading enzyme from Pantoea agglomerans dephosphorylates myo-inositol hexakisphosphate in a stereospecific way to finally D-myo-inositol(1,2,4,5,6)pentakisphosphate.  相似文献   

14.
1 Grape phylloxera lack intracellular symbionts, but the leaf‐galling form appears to be associated with a single microbial species. 2 16S and 18SrDNA sequences were used for identification of symbiotic material. 3 A single bacterial species, closely related to Pantoea agglomerans, was identified in adult parthenogenetic individuals, their eggs and leaf gall tissue of several populations. 4 A 16S rDNA primer pair was designed to test grape phylloxera populations more specifically for the presence of P. agglomerans. 5 16S rDNA sequences of the identified bacteria were very similar to already‐known secondary symbionts occurring in aphids, thrips and other insects. 6 The identified bacteria were culturable on simple media, which demonstrates that the relationship between grape phylloxera and P. agglomerans is not as firm as that of the obligately endosymbiotic Buchnera aphidicola and other aphids.  相似文献   

15.
16.
Biosynthesis of metal nanoparticles represents a clean, eco‐friendly and sustainable “green chemistry” engineering. Lately, a number of metal selenides were successfully synthesized by biological methods. Here, cuprous selenide (Cu2Se) nanospheres were prepared under mild conditions by a novel biological‐chemical coupling reduction process. The simple process takes place between EDTA‐Cu and Na2SeO3 in presence of an alkaline solution containing NaBH4 and a selenite‐reducing bacteria, Pantoea agglomerans. It is noteworthy that the isolated Pantoea agglomerans and Cu+ ions, where the latter are obtained from reducing Cu2+ ions by NaBH4, play a key role, and Cu+ ions not only can promote the generation of Se2? ions as a catalyst, but also can react with Se2? ions to form Cu2Se. XRD pattern, SEM, and TEM images indicated that Cu2Se nanoparticles were tetragonal crystal structure and the nanospheres diameter were about 100 nm. EDX, UV–vis, and FTIR spectra show that the biosynthesized Cu2Se nanospheres are wrapped by protein and have a better stability. This work first proposes a new biosynthesis mechanism, and has important reference value for biological preparation of metal selenide nanomaterials. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1264–1270, 2016  相似文献   

17.
The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with Psavastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain Pagglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of Psavastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for Psavastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of Psavastanoi pv. savastanoi DAPP-PG 722.  相似文献   

18.
Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.  相似文献   

19.
Pantoea ananatis is a Gram‐negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non‐pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4‐formamido‐4,6‐dideoxy‐d ‐glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6‐dehydratase, an aminotransferase, and an N‐formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N‐formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis–Menten kinetics with dTDP‐4‐amino‐4,6‐dideoxy‐d ‐glucose as the substrate and N10‐formyltetrahydrofolate as the carbon source. In addition, the X‐ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N‐formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N‐formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non‐pathogenic apparently do not contain these genes.  相似文献   

20.
Aims: To isolate the rhizosphere competence‐defective transposon Tn5 mutant of Pantoea agglomerans NBRISRM (SRM) and to identify the gene causing defect in its root colonization ability. Methods and Results: From over 5000 clones containing Tn5, one mutant P. agglomerans NBRISRMT (SRMT) showing 6 log units less colonization when compared with SRM, after 30 days in sand‐nonsterilized soil assay system was selected for further work to determine the effects of the mutation on rhizosphere competence. Southern hybridization analysis of restricted genomic DNA of SRMT demonstrated that the mutant had a single Tn5 insert. SRM increased in titre to about 2 × 108 CFU g?1 root, compared with the indigenous bacterial population of heterotrophs of about 5 × 107 CFU g?1 root. In contrast, 30 days later, the titre value of SRMT was almost undetectable at 1 × 102 CFU g?1 root, demonstrating its inability to survive and colonize the rhizosphere. Sequencing of the flanking region of the Tn5 mutant revealed that Tn5 disrupted the purB gene. Conclusions: A defect in the colonization phenotype of the SRMT was attributed to the disruption in adenylosuccinate lyase (EC 4.3.2.2) which is encoded by the pur B gene and is required for rhizosphere colonization in P. agglomerans. Significantly less exopolysaccharide and biofilm was formed by SRMT when compared to SRM, because of the disruption of the purB gene. Significance and Impact of the Study: This work provides the first evidence for a functional role of purB gene in rhizosphere competence and root colonization by any rhizobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号