首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

2.
Caracaras, falcons and forest falcons, which are representative of the three subfamilies of the family Falconidae, have different flight behaviour. Since, during flight, the tail works in coordination with the wings, the tail muscles could be indicative of the type of flight behaviour. The aim of this work was to describe in detail the little-known tail muscles of the Falconidae and to explore their possible association with this different behaviour, by using the muscle mass as an indicator. To this end, the tail muscles of 18 specimens representing the three subfamilies of Falconidae were dissected, weighed and their percentage to the body mass calculated. The possible differences in tail muscle mass between Falconinae and Polyborinae were explored with a Bayesian statistical approach. In all species, the muscles depressor caudae and levator caudae had the highest mass values (0.028%–0.329% and 0.120%–0.274%, respectively), in accordance with the key movements performed during flight, that is, the tail depression and elevation. The total muscle masses of Falconinae and those of Polyborinae were significantly different (p < 0.05). This difference can be related with the different flight behaviour of falcons and caracaras, that is, fast and erratic flight, respectively.  相似文献   

3.
4.
Aim  To infer the most plausible explanations for the presence of 14 species of the Neotropical cucurbit genus Sicyos on the Hawaiian Islands, two on the Galápagos Islands, two in Australia, and one in New Zealand. Location  Neotropics, the Hawaiian and Galápagos archipelagos, Australia and New Zealand. Methods  We tested long‐problematic generic boundaries in the tribe Sicyoeae and reconstructed the history of Sicyos using plastid and nuclear DNA sequences from 87 species (many with multiple accessions) representing the group’s generic and geographic diversity. Maximum likelihood and Bayesian approaches were used to infer relationships, divergence times, biogeographic history and ancestral traits. Results  Thirteen smaller genera, including Sechium, are embedded in Sicyos, which when re‐circumscribed as a monophyletic group comprises 75 species. The 14 Hawaiian species of Sicyos descended from a single ancestor that arrived c. 3 million years ago (Ma), Galápagos was reached twice at c. 4.5 and 1 Ma, the species in Australia descended from a Neotropical ancestor (c. 2 Ma), and New Zealand was reached from Australia. Time since arrival thus does not correlate with Sicyos species numbers on the two archipelagos. Main conclusions  A plausible mechanism for the four trans‐Pacific dispersal events is adherence to birds of the tiny hard fruit with retrorsely barbed spines found in those lineages that underwent long‐distance migrations. The Hawaiian clade has lost these spines, resulting in a lower dispersal ability compared with the Galápagos and Australian lineages, and perhaps favouring allopatric speciation.  相似文献   

5.
Podicipediformes is a cosmopolitan clade of foot‐propelled diving birds that, despite inhabiting marine and lacustrine environments, have a poor fossil record. In this contribution, we describe three new grebe fossils from the diatomite beds of the Late Miocene Truckee Formation (10.2 ± 0.2 Ma) of Nevada (USA). Two postcranial skeletons and an associated set of wing elements indicate that at least two distinct grebe species occupied the large, shallow Lake Truckee during the Miocene. Phylogenetic analysis of morphological data supports a basal divergence between a clade uniting the dabchicks (Tachybaptus, Limnodytes, Poliocephalus) and a clade uniting Podilymbus, Rollandia, Podiceps and Aechmophorus. Missing data, combined with a paucity of informative skeletal characters, make it difficult to place the Truckee grebes within either of these major clades. Given the weak projection of the cnemial crests compared with extant grebes, it also remains plausible that these specimens represent stem lineage grebes. Although more material is needed to resolve the phylogenetic position of the Truckee grebes, our analysis offers insight into the tempo of grebe evolution by placing the Miocene taxon Thiornis sociata within the dabchick clade. Thiornis sociata provides a minimum age calibration of 8.7 Ma for the basal divergence among dabchicks. Based on the recovery of a nonmonophyletic Tachybaptus and placement of the Western Hemisphere ‘Tachybaptusdominicus as the basal member of the otherwise exclusively Eastern Hemisphere dabchick clade, we resurrect the genus Limnodytes for this extant species (Limnodytes dominicus). Our results also nest the large, long‐necked Aechmophorus grebes within the genus Podiceps, as the sister taxon to Podiceps major.  相似文献   

6.
Twelve generic names have been ascribed to the New World tamarins but all are currently placed in just one: Saguinus Hoffmannsegg, 1807. Based on geographical distributions, morphology, and pelage patterns and coloration, they have been divided into six species groups: (1) nigricollis, (2) mystax, (3) midas, (4) inustus, (5) bicolor and (6) oedipus. Molecular phylogenetic studies have validated five of these groups; each are distinct clades. Saguinus inustus is embedded in the mystax group. Genetic studies show that tamarins are sister to all other callitrichids, diverging 15?13 Ma. The small‐bodied nigricollis group diverged from the remaining, larger tamarins 11?8 Ma, and the mystax group diverged 7?6 Ma; these radiations are older than those of the marmosets (Callithrix, Cebuella, Mico), which began to diversify 6?5 Ma. The oedipus group diverged from the midas and bicolor groups 5?4 Ma. We review recent taxonomic changes and summarize the history of the generic names. Taking into account the Late Miocene divergence time (11?8 Ma) between the large‐ and small‐bodied tamarin lineages, the small size of the nigricollis group species when compared with other tamarins, and the sympatry of the nigricollis group species with the larger mystax group species, we argue that the nigricollis group be recognized as a distinct genus: Leontocebus Wagner, 1839.  相似文献   

7.
A large number of plant macrofossils from several Middle to Upper Miocene localities from Iceland have been studied. The fossil material includes four ferns and fern allies, seven conifers, and about 40 species of flowering plants. Betula islandica and Salix gruberi are described as new species. Coniferous twigs previously ascribed to the genus Sequoia are shown to belong to Cryptomeria based on macro‐morphological and epidermal features. Fossil plants from Iceland are compared with coeval fossil taxa from Europe and North America and with living plants. The main finding is that the Miocene flora of Iceland belongs to a widespread Neogene northern hemispheric floral type including plants whose representatives are restricted to East Asia, North America and to western Eurasia at the present time. Previously inferred conspicuous similarities to North American modern equivalents appear to be misleading. The type of vegetation in four plant‐bearing sedimentary formations from the late Mid Miocene to Late Miocene, the 12 Ma Brjánslækur‐Seljá Formation, the 10 Ma Tröllatunga‐Gautshamar Formation, the 9–8 Ma Skarðsströnd‐Mókollsdalur Formation, and the 7–6 Ma Hreðavatn‐Stafholt Formation, corresponds to a humid temperate broadleaved (deciduous)–coniferous mixed forest dominated by Betulaceae, Fagaceae and Acer. Changes in species composition in the sedimentary formations reflect a shift from warm temperate (Cfa climate) to cool temperate (Cfb climate) conditions from the late Mid Miocene to the latest Miocene. This shift was connected to repeated phases of extinction and colonization. Specifically, one set of thermophilic taxa including Magnolia, Liriodendron, Sassafras and Comptonia went extinct between 12 and 10 Ma, and appears to have been replaced by another set of thermophilic taxa in the 10 Ma formation (Juglandaceae aff. Pterocarya/Cyclocarya, Rhododendron ponticum type). The 9–8 and 7–6 Ma formations are characterized by taxa that migrated to Iceland from Europe, such as Fagus gussonii, Betula cristata and Pterocarya fraxinifolia type. Although there is convincing evidence that plants colonized Iceland both from North America and Europe until 12 Ma, migration in the younger formations (9–8, 7–6 Ma) is suggested to have occurred mainly from Europe. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 369–417.  相似文献   

8.
Aim To test a vicariant speciation hypothesis derived from geological evidence of large‐scale changes in drainage patterns in the late Miocene that affected the drainages in the south‐eastern Tibetan Plateau. Location The Tibetan Plateau and adjacent areas. Methods The cytochrome b DNA sequences of 30 species of the genus Schizothorax from nine different river systems were analysed. These DNA sequences were analysed using parsimony, maximum likelihood and Bayesian methods. The approximately unbiased and Shimodaira–Hasegawa tests were applied to evaluate the statistical significance of the shortest trees relative to alternative hypotheses. Dates of divergences between lineages were estimated using the nonparametric rate smoothing method, and confidence intervals of dates were obtained by parametric bootstrapping. Results The phylogenetic relationships recovered from molecular data were inconsistent with traditional taxonomy, but apparently reflected geographical associations with rivers. Within the genus Schizothorax, we observed a divergence between the lineages from the Irrawaddy–Lhuit and Tsangpo–Parlung rivers, and tentatively dated this vicariant event back to the late Miocene (7.3–6.8 Ma). We also observed approximately simultaneous geographical splits within drainages of the south‐eastern Tibetan Plateau, the Irrawaddy, the Yangtze and the Mekong–Salween rivers in the late Miocene (7.1–6.2 Ma). Main conclusions Our molecular evidence tentatively highlights the importance of palaeoriver connections and the uplift of the Tibetan Plateau in understanding the evolution of the genus Schizothorax. Molecular estimates of divergence times allowed us to date these vicariant scenarios back to the late Miocene, which agrees with geological suggestions for the separation of these drainages caused by tectonic uplift in south‐eastern Tibet. Our results indicated the substantial role of vicariant‐based speciation in shaping the current distribution pattern of the genus Schizothorax.  相似文献   

9.
The evolution of Neotropical birds of open landscapes remains largely unstudied. We investigate the diversification and biogeography of a group of Neotropical obligate grassland birds (Anthus: Motacillidae). We use a multilocus phylogeny of 22 taxa of Anthus to test the hypothesis that these birds radiated contemporaneously with the development of grasslands in South America. We employ the R package DDD to analyze the dynamics of Anthus diversification across time in Neotropical grasslands, explicitly testing for shifts in dynamics associated with the Miocene development of grasslands, the putative Pleistocene expansion of arid lowland biomes, and Pleistocene sundering of Andean highland grasslands. A lineage‐through‐time plot revealed increases in the number of lineages, and DDD detected shifts to a higher clade‐level carrying capacity during the late Miocene, indicating an early burst of diversification associated with grassland colonization. However, we could not corroborate the shift using power analysis, probably reflecting the small number of tips in our tree. We found evidence of a divergence at ~1 Mya between northern and southern Amazonian populations of Anthus lutescens, countering Haffer's idea of Pleistocene expansion of open biomes in the Amazon Basin. We used BioGeoBears to investigate ancestral areas and directionality of colonization of Neotropical grasslands. Members of the genus diversified into, out of, and within the Andes, within‐Andean diversification being mostly Pleistocene in origin.  相似文献   

10.
Aim Turdus thrushes are one of the most speciose and widespread songbird genera, comprising nearly 70 species that combined have a near‐global distribution. Herein, we use molecular phylogenetic, molecular clock and behavioural evidence to examine the historical biogeography of the genus. Ancestral area reconstructions in conjunction with divergence estimates and palaeoclimatogical data are used to test whether the long‐standing paradigm of Beringian colonization or trans‐Atlantic dispersal best explains modern distributions in the New and Old Worlds. Location Worldwide, with emphasis on New World–Old World biotic interchange. Methods Using a molecular phylogenetic hypothesis of Turdus thrushes, we reconstructed ancestral area relationships utilizing the five major continental or regional areas occupied by species in the genus. We also examined the evolution of behaviours on the phylogeny, and estimated the timing of major lineage divergences via a molecular clock. Results Turdus originated in Eurasia, and following the colonization of Africa underwent a series of five trans‐Atlantic sweepstake dispersals. The data reject the alternative hypothesis that connections between Old and New World Turdus species can be attributed to movement through Beringia with subsequent extinction. Divergence estimates indicate that these dispersals all occurred near the Miocene–Pliocene boundary, 5 Ma. A significant phylogenetic correlation between migratory and flocking behaviour is evident in the genus. Main conclusions The initial divergence of Turdus in the Old World was followed by a series of trans‐Atlantic sweepstake dispersal events. These dispersals are temporally correlated with a specific palaeoclimatic system, which would have facilitated transport of Turdus from the Caribbean to the Old World across the Atlantic. Uplift of the Central American Seaway 4.7 Ma effectively shut down the palaeoclimatic system, and no additional trans‐Atlantic dispersals are evident in Turdus after this time. Migratory movements by ancestral lineages in flocks, rather than as single individuals, suggest an increased likelihood of successfully colonizing new areas, post‐dispersal.  相似文献   

11.
Aim African–Asian disjunctions are common in palaeotropical taxa, and are typically explained by reference to three competing hypotheses: (1) ‘rafting’ on the Indian tectonic plate, enabling Africa‐to‐Asia dispersal; (2) migration via Eocene boreotropical forests; and (3) transoceanic long‐distance dispersal. These hypotheses are tested using Uvaria (Annonaceae), which is distributed in tropical regions of Africa, Asia and Australasia. Recent phylogenetic reconstructions of the genus show a clear correlation with geographical provenance, indicating a probable origin in Africa and subsequent dispersal to Asia and then Australasia. Ancestral areas and migration routes are inferred and compared with estimates of divergence times in order to distinguish between the prevailing dispersal hypotheses. Location Palaeotropics. Methods Divergence times in Uvaria are estimated by analysing the sequences of four DNA regions (matK, psbA–trnH spacer, rbcL and trnL–F) from 59 Uvaria species and 77 outgroup species, using a Bayesian uncorrelated lognormal (UCLD) relaxed molecular clock. The ancestral area of Uvaria and subsequent dispersal routes are inferred using statistical dispersal–vicariance analysis (s‐diva ). Results Uvaria is estimated to have originated in continental Africa 31.6 Ma [95% highest posterior density (HPD): 38.4–25.1 Ma] between the Middle Eocene and Late Oligocene. Two main migration events during the Miocene are identified: dispersal into Madagascar around 17.0 Ma (95% HPD: 22.3–12.3 Ma); and dispersal into Asia between 21.4 Ma (95% HPD: 26.7–16.7 Ma) and 16.1 Ma (95% HPD: 20.1–12.1 Ma). Main conclusions Uvaria fruits are widely reported to be consumed by primates, and are therefore unlikely candidates for successful long‐distance transoceanic dispersal. The other biogeographical hypotheses, involving rafting on the Indian tectonic plate, and dispersal via the European boreotropical forests associated with the Eocene thermal maximum, can be discounted due to incongruence with the divergence time estimates. An alternative scenario is suggested, involving dispersal across Arabia and central Asia via the tropical forests that developed during the late Middle Miocene thermal maximum (17–15 Ma), associated with the ‘out‐of‐Africa’ dispersal of primates. The probable route and mechanism of overland dispersal between Africa and Asia for tropical plant groups during the Miocene climatic optimum are clarified based on the Uvaria data.  相似文献   

12.
Widely known for pest species that include major modulators of temperate forests, the genus Choristoneura is part of the species‐rich tribe Archipini of leafroller moths (Tortricidae). Delimitation of the genus has remained unresolved because no phylogeny has included species endemic to Africa and studies have often omitted the type species of the genus. Further taxonomic confusion has been generated by the transfer of Archips occidentalis (Walsingham) to Choristoneura, creating a homonym with Choristoneura occidentalis Freeman, an important defoliator of North American forests. To define the limits of the genus, we reconstructed a phylogeny using DNA sequences for mitochondrial cytochrome oxidase subunit I and nuclear ribosomal 28S genes. Our ingroup included 23 Choristoneura species‐level taxa, complemented by a large sample of outgroups comprising 82 species of Archipini and other Tortricidae. We generated a time‐calibrated tree using fossil and secondary calibrations and we inferred biogeographic and diversification processes in Choristoneura. Our analysis recovered the genus as polyphyletic, with Archips occidentalis, Choristoneura simonyi and Choristoneura evanidana excluded from the main clade. Based on the recovered phylogenies and a redefinition, we restrict Choristoneura primarily to species with a northern hemisphere distribution. Our analysis supports A. occidentalis as the sister group of Cacoecimorpha pronubana, C. simonyi as the sister of ‘Xenotemnapallorana, and C. evanidana as the sister of Archips purpurana. A new combination is proposed: Archips evanidana comb.n. ; the availability of ‘Xenotemna’ as a valid name is discussed and A. occidentalis is considered as an orphaned name within the Archipini. We found support for a Holarctic origin of Choristoneura about 23 Ma, followed by early divergence in the Palearctic region. The main divergence occurred at 16 Ma, with one clade in the Nearctic and another in the Palearctic. Subsequent cladogenetic events were synchronous and related to herbivorous specialization, with each clade divided into coniferophagous and polyphagous lineages. Their specialization as conifer feeders temporally matched the expansion of boreal forest during the Miocene.  相似文献   

13.
Aim The presence of numerous reliable fossils and the occurrence of many endemic island species make the Boraginales particularly suitable for integrative biogeographical studies. In this paper we aim to elucidate the time frame and events associated with the origin of selected borages endemic to the Mediterranean climate zone. More specifically, we describe and examine the alternative palaeo‐ and neoendemic hypotheses for their origin. Location Corsica and Sardinia (continental fragment islands) and the Canary Islands (an oceanic island archipelago). Methods Eighty‐nine accessions, representing 30 genera from five families ascribed to the Boraginales, were examined for six chloroplast DNA regions. We used an integrative approach including phylogenetic analyses (Mr Bayes ), Bayesian molecular dating (T3 package) with four fossil constraints on nodes, and biogeographical reconstructions (diva ) to elucidate the temporal and spatial origins of the Corso‐Sardinian and Canary Island endemics. Results Species of Echium endemic to the Canary Islands diverged from their continental sister clade during the Miocene (15.3 ± 5.4 Ma), probably after the rise of the oldest islands (c. 20 Ma). Corso‐Sardinian endemics of Borago diverged from their primarily North African sister clade during the late Miocene‐Pliocene (c. 6.9 ± 3.6 Ma), well after the initial fragmentation of the islands (c. 30 Ma). Similarly, Corso‐Sardinian endemics of Anchusa diverged from the South African Anchusa capensis during the Pliocene–Pleistocene (c. 2.7 ± 2.1 Ma). Main conclusions The present study reveals an Anatolian origin for Anchusa, Borago and Echium and underlines the importance of the Eastern Mediterranean region as a possible reservoir for plant evolution in the Mediterranean Basin. For Anchusa and Borago, the divergence from their respective sister clades on the two types of islands post‐dated the formation of the islands, thus supporting the neo‐endemic hypothesis, whereas the dating results for the origin of Echium endemics were less conclusive.  相似文献   

14.
Caves may offer suitable refugia for troglophilic invertebrates during periods of unfavourable climatic conditions because of their stable microclimates. As a consequence, allopatric divergence from their epigean counterparts may occur, leading to formation of truly hypogean communities (the Climatic Relict Hypothesis). Unlike the well‐studied effects of Pleistocene glaciations, we know little about how ancient climate changes drove the development of cave‐dwelling organisms living at both middle and lower latitudes. We investigate the evolutionary history of the troglophilic spider genus Nesticella (Araneae, Nesticidae) in relation to Asian Neogene (23–2.6 Ma) climatic changes. Our analyses discern clear differences in the evolution of the two main clades of Nesticella, which occur in temperate/subtropical and tropical latitudes. Eastern Asian Nesticella gradually evolved greater sedentariness and a strict subterranean lifestyle starting from the middle Miocene Epoch (~15–14 Ma) in conjunction with the progressive deterioration of the climate and vegetational shifts. Caves appear to have acted as refugia because of their internally uniform temperature and humidity, which allowed these spiders to survive increasing external seasonality and habitat loss. In contrast, a uniform accumulation of lineages, long‐lasting times for dispersals and the lack of a comparable habitat shifting characterized the tropical lineage. This difference in pattern likely owes to the mild effects of climate change at low latitudes and the consequent lack of strong climatic drivers in tropical environments. Thus, the mid‐Miocene climatic shift appears to be the major evolutionary force shaping the ecological differences between Asian troglophilic invertebrates and the driver of the permanent hypogean communities in middle latitudes.  相似文献   

15.
Aim To infer the phylogenetic relationships and biogeography of Hydromantes, with special emphasis on the European taxa. In particular, we aimed to test: (1) the monophyly of the European species and current views on their interrelationships; and (2) previously proposed timings of the separation of European and American Hydromantes, and of biogeographically important events within Europe. Location California and the Western Mediterranean Basin, specifically south‐east France, Italy, and the island of Sardinia. Methods Partial sequences of mitochondrial genes (cytochrome b and 12S rRNA) were obtained from 45 specimens of Hydromantes, including all European extant species and subspecies, and two species from California. In addition, a fragment of the mitochondrial 16S rRNA gene was amplified for 16 specimens. Data sets were aligned using Clustal X, and well‐supported phylogenetic trees were produced using maximum‐likelihood, Bayesian and maximum‐parsimony methods. Estimates of divergence times were obtained with the program r8s , the molecular clock being calibrated using the opening of the Strait of Gibraltar, the final event in the Messinian Salinity Crisis of 5.3 Ma. Results Separation between the American and European clades occurred approximately 13.5 Ma, most probably before or after westward dispersal across the Bering Land Bridge. In Europe, divergence started in the late Miocene, when Hydromantes (A.) genei separated from other members of the genus 9 Ma and colonized south‐west Sardinia. Movement between the European mainland and Sardinia, by a member of the subgenus Speleomantes, occurred in the Messinian Salinity Crisis, after the Mediterranean Basin desiccated almost completely 5.96 Ma. Subsequent widespread aridification fragmented the geographical ranges of Hydromantes, which live in cool and humid conditions, resulting in the origin of the six species in the subgenus Speleomantes. In contrast, a second period of diversification, in continental Europe 2–1.3 Ma, was probably caused by very cold interludes during the climatic oscillations that characterized the Pleistocene. Main conclusions The molecular clock used here indicates that the separation of Californian and European Hydromantes occurred more recently than previously believed, and the same is true of some subsequent phylogenetic divergences within Europe. Estimated dates for these divergence events are consistent with known geophysical and climatic events that could have caused or facilitated them.  相似文献   

16.
Orographic and climatic oscillations have played crucial roles in shaping the nucleotide diversity and evolutionary history of many species across the Northern Hemisphere. In this study, based on 10 nuclear loci and a chloroplast DNA marker, we analyzed the nucleotide polymorphisms and demographic history of the endangered conifer species Pinus bungeana in Northwest China and investigated the phylogenetic relationships between P. bungeana and two related species, that is, Pinus gerardiana and Pinus squamata. We found that P. bungeana exhibited an extremely low level of nucleotide diversity (πsil = 0.00159). Demographic simulations based on DIYABC analysis showed that P. bungeana underwent demographic expansion and contraction during the Miocene. According to ecological niche modeling, we found that this species survived in situ during the glacial period and was not restricted to southern refugia. We speculate that P. bungeana may have experienced widespread population shrinkage from the Last Interglacial to the Last Glacial Maximum due to geological or climatic events. Isolation‐with‐migration analysis revealed that the divergence (~2.4–4.2 Ma) among P. bungeana and its related species was significantly associated with the Qinghai–Tibetan Plateau uplift events in the mid‐to‐late Tertiary period. Species tree analyses suggested that these three related Pinus species formed a monophyletic clade with high bootstrap support. These results suggest that the Miocene–Pliocene and Pleistocene geological and climatic fluctuations might have profoundly affected the nucleotide diversity and demography of this psychrotolerant conifer species in western China.  相似文献   

17.
The taxonomy of the genets (genus Genetta) has long been discussed, thus hampering endeavours towards evolutionary reconstruction. Sequence data from the complete cytochrome b gene (cyt b) were generated for 50 specimens representing 15 morphological species in order to allow the production of the first exhaustive molecular phylogeny of the genets. Second, a revised morphological matrix comprising 50 characters was combined with the cyt b data to estimate the level of morphological homoplasy. Phylogenetic analyses were conducted using parsimony, maximum likelihood and Bayesian procedures. Our results based on cyt b contradict a part of the traditional taxonomy of genus Genetta, the servaline and small‐spotted genets being paraphyletic, but confirmed the species status recently re‐investigated for three genets belonging to the large‐spotted complex, including the newly described G. bourloni. The combined analysis yielded similar results although morphological characters were clearly homoplasic. Partitioned Bremer supports indicated conflicting signals between the two data sets throughout the tree, and species‐diagnostic characters, useful for delimiting species boundaries, were significantly correlated to habitat. However, morphological data supported the monophyly of clades (G. victoriae, other genets) (G. servalina, G. cristata), large‐spotted genet complex and forest forms. Our results suggest a complex evolutionary history of the genets in Africa, with a Poiana‐like ancestor inhabiting rain forest, and then a diversification involving two independent invasions of open habitats and one reversion to rain forest. Divergence estimates based on cyt b revealed that splitting events within genets partly follow a climatic speciation model during the cyclical periods of the Quaternary, although ‘primitive’ rain forest lineages diverged earlier, during the Late Miocene and Early Pliocene. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 589–610.  相似文献   

18.
Aim To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep‐time evolutionary time‐scale. Location Western Europe: 626 fossil‐bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour‐joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6–4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long‐term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale.  相似文献   

19.
To evaluate the monophyletic status of the genus Monodelphis, and its species complexes, we used a 9.3‐kb multimarker alignment to build a phylogenetic tree based on the largest taxon sampling for this didelphid genus to date. Furthermore, using a Bayesian framework and six calibration points, we inferred the divergence times for the major Monodelphis lineages and their current geographical distribution to perform an ancestral state reconstruction for geographical areas. Our results indicate the monophyletic nature of Monodelphis and suggest ‘kunsi’ as a new species complex that includes Monodelphis kunsi and an undescribed species. Monodelphis is further subdivided into three clades showing a common vicariance pattern, with each major clade consisting of a northern South American lineage joined with an Atlantic Forest lineage. This geographic consistency suggests a vicariant event that might have been related to a warm period at the Oligocene/Miocene border, according to our time results. © 2015 The Linnean Society of London  相似文献   

20.
Leptotina butterflies (Lycaenidae, Polyommatiinae) are found mostly in tropical and subtropical areas around the globe, marginally penetrating into temperate regions. Here, we investigated phylogenetic and biogeographical relationships of most representatives of the subtribe, using both likelihood and Bayesian approaches. We also estimated the timing of their diversification. And lastly, we studied phylogeographic patterns of the most widespread species, Leptotes pirithous. DNA sequences from two mitochondrial (COI, COII) and two nuclear genes (wingless, Ef1α) were analysed for 13 species of the genus Leptotes Scudder and one species of the genus Cyclyrius Butler. Both genera together form a monophyletic clade, and Cyclyrius is rooted deep inside Leptotes. Therefore, we designate Cyclyrius to be a junior synonym of Leptotes. According to our study, the genus Leptotes originated between the late Eocene and early Oligocene (35–31 Ma). During the Miocene it dispersed to the rest of the southern hemisphere, with further speciation events within the Indo‐Australian region, and separate radiations in the Americas and the Afrotropics. Leptotes webbianus from the Canary Islands turned out to be sister to the American clade from which it split c. 12 Ma. Leptotes pirithous originated in Madagascar c. 4 Ma and invaded the whole of Africa and southern Europe, including numerous surrounding islands. Populations of L. pirithous from Mauritius and Madagascar turned out to represent a distinct species (Leptotes durrelli sp.n. ) and the same applies to the Australasian populations of Leptotes plinius (Leptotes lybas stat. rev. ). This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:20308930‐988B‐4327‐A35F‐CC983D46263B .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号