首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Wetland forests, known as coal forests, extended over large areas of the palaeotropics during the Late Carboniferous and the Permian Periods. They were initiated during the Serpukhovian Age as a response to lowering sea levels having exposed large areas of continental shelf. They expanded dramatically during the late Bashkirian Age, but then contracted by over one‐half during the Kasimovian Age. The estimated loss of carbon sink probably resulted in an annual increase in atmospheric CO2 of about 2–5 ppm, and coincided with clear evidence of global warming in both the northern and southern high latitudes. A return to cooler conditions in very Early Permian times coincided with an expansion of the palaeotropical coal forests in the Far East, but this was short‐lived and most of the rest of the Permian was a time of global warming. The Palaeozoic evidence clearly confirms that there is a correlation between levels of atmospheric CO2 and global climates. However, care must be taken in extrapolating this evidence to the present‐day tropical forests, which do not act as a comparable unsaturated carbon sink.  相似文献   

2.
The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2) and temperature on high‐latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ13C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree‐ring record, which extends from 1912 through 1961 (50 years), targets early twentieth‐century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ13C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high‐latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth‐Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ13C in response to twentieth century pCO2 rise, a significant negative relationship (r = ?0.53, P < 0.0001) between the average, annual Δ13C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water‐use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2. We conclude that annual tree‐ring records from northern high‐latitude forests record the effects of climate warming and pCO2 rise across the twentieth century.  相似文献   

3.
Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2, and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13‐year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan–Monroe State Forest (MMSF) in Indiana, and a regional 11‐year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water‐demanding ‘mesophytic’ tree species. Given the current replacement of water‐stress adapted ‘xerophytic’ tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr?1) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1–3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth‐enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.  相似文献   

4.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

5.
Keteleeria is a small genus of Pinaceae now mainly restricted to eastern Asia. Although this genus has been documented with a wide distribution in the geologic record of Europe, North America, and Asia, its history in low‐latitude areas (including South China) has remained obscure. In this paper, a fossil wood of Keteleeria sp. is described from the Late Pleistocene (29–27 ka BP) of the Maoming Basin, South China. This wood is the most ancient megafossil evidence of Keteleeria within the modern distribution area of this genus. The fossil records of Keteleeria suggests that this thermophyllous genus migrated into South China by the Middle Pleistocene escaping from glacial cooling and became widespread over this region in the Late Pleistocene beginning from the interglacial stage preceding the Last Glacial Maximum. The analysis of growth rings in the fossil wood and its comparison with those of modern Keteleeria davidiana (Bertrand) Beissner indicates that in the Late Pleistocene of Maoming Basin (29–27 ka BP) there was a humid climate with less pronounced seasonality of precipitation than that seen in the subtropical monsoonal climate of modern northeastern Vietnam. Apparently, the Maoming Basin was influenced by interglacial regime with summer–monsoon circulation. The previously proposed method to distinguish between evergreen and deciduous conifers based on growth ring anatomy, is not reliable because of the wide variance and ambiguity in its results.  相似文献   

6.
This study analyzed the net carbon dioxide (CO2) emission reductions between 2005 and 2050 by using wood for energy under various scenarios of forest management and energy conversion technology in Japan, considering both CO2 emission reductions from replacement of fossil fuels and changes in carbon storage in forests. According to our model, wood production for energy results in a significant reduction of carbon storage levels in forests (by 46% to 77% in 2050 from the 2005 level). Thus, the net CO2 emission reduction when wood is used for energy becomes drastically smaller. Conventional tree production for energy increases net CO2 emissions relative to preserving forests, but fast‐growing tree production may reduce net CO2 emissions more than preserving forests does. When wood from fast‐growing trees is used to generate electricity with gas turbines, displacing natural gas, the net CO2 emission reduction from the combination of fast‐growing trees and electricity generation with gas turbines is about 58% of the CO2 emission reduction from electricity generation from gas turbines alone in 2050, and an energy conversion efficiency of around 20% or more is required to obtain net reductions over the entire period until 2050. When wood is used to produce bioethanol, displacing gasoline, net reductions are realized after 2030, provided that heat energy is recovered from residues from ethanol production. These results show the importance of considering the change in carbon storage when estimating the net CO2 emission reduction effect of the wood use for energy.  相似文献   

7.
Aim Across all latitudes, high‐elevation tree lines represent a drastic change in the dominant plant life‐form, from upright trees to low‐stature alpine plants. Although associated with low temperatures, the physiological mechanisms controlling this boundary are still not clear. The growth‐limitation hypothesis assumes a direct low‐temperature restriction of tissue formation at otherwise sufficient photoassimilation. In order to test this hypothesis, we present a global synthesis of previously published and new data on tree carbon supply status at high‐elevation tree lines. Location Global; 13 regions between 68° N and 45° S. Methods Late‐season concentrations of non‐structural carbohydrates (NSC) in foliage and branch wood were measured at three elevations across the tree line ecotones, from upper tall forests (timber line) to the edges of aborescent tree growth (tree line). Year‐round records of ?10 cm soil temperatures were taken at the tree line. Results Despite large differences in elevation and season length, the mean growing season temperature at the tree line was similar (approximately 6.6 °C) between all sites. NSC concentrations were not depleted at any of the elevation gradients between timber line and tree line, indicating no shortage of C at the uppermost tree stands. Tested across all sites, NSC concentrations in fact significantly increased with elevation. On average, NSC increased by 18% in leaves and 26% in branch wood from the lowest to the highest stands, primarily due to higher starch concentrations rather than free sugars. Hence, these responses do not reflect osmotic adjustments to lower temperatures at the end of the growing season. Main conclusions This global data set contributes to a mechanistic understanding of tree line formation based on biological principles across climatic zones and tree genera. No evidence of C shortage was found at the high‐elevation tree line in either seasonal and non‐seasonal regions. The increasing trend of NSC concentrations with elevation is in line with the growth‐limitation hypothesis.  相似文献   

8.
The evolution of important woody plant groups, ancestral to the modern Mediterranean dendroflora, is surveyed. Altogether, the history and phytogeography of 86 fossil species or species-groups is considered. The major part of the Paleomediterranean woody plants appears in Miocene mixed mesophyllous and mesoxerophyllous, evergreen and deciduous forests. The initial formation of basic Mediterranean sclerophyllous woody vegetation types is referred to periods from the Late Sarmatian to the Late Pontian, in geographic areas between 37° and 45° N latitude.  相似文献   

9.
Aim Tropical forests have been recognized as important global carbon sinks and sources. However, many uncertainties about the spatial distribution of live tree above‐ground biomass (AGB) remain, mostly due to limited availability of AGB field data. Recent studies in the Amazon have already shown the importance of large sample size for accurate AGB gradient analysis. Here we use a large stem density, basal area, community wood density and AGB dataset to study and explain their spatial patterns in an Asian tropical forest. Location Borneo, Southeast Asia. Methods We combined stem density, basal area, community wood density and AGB data from 83 locations in Borneo with an environmental database containing elevation, climate and soil variables. The Akaike information criterion was used to select models and environmental variables that best explained the observed values of stem density, basal area, community wood density and AGB. These models were used to extrapolate these parameters across Borneo. Results We found that wood density, stem density, basal area and AGB respond significantly, but differentially, to the environment. AGB was only correlated with basal area, but not with stem density and community wood specific gravity. Main conclusions Unlike results from Amazonian forests, soil fertility was an important positive correlate for AGB in Borneo while community wood density, which is a main driver of AGB in the Neotropics, did not correlate with AGB in Borneo. Also, Borneo's average AGB of 457.1 Mg ha?1 was c. 60% higher than the Amazonian average of 288.6 Mg ha?1. We find evidence that this difference might be partly explained by the high density of large wind‐dispersed Dipterocarpaceae in Borneo, which need to be tall and emergent to disperse their seeds. Our results emphasize the importance of Bornean forests as carbon sinks and sources due to their high carbon storage capacity.  相似文献   

10.
以分布在中国不同气候区的131个成熟天然林土壤为研究对象,测定不同土层(0~10、10~20、20~30、30~50和50~100 cm)土壤有机碳(SOC)密度,分析其与气象因子、土壤性质的关系,研究天然林SOC垂直分布特征及其影响机理。结果表明: 温带针叶林、温带落叶阔叶林、亚热带落叶阔叶林和亚热带常绿阔叶林0~30 cm土层SOC密度均随土壤深度增加而降低。在0~100 cm土层,SOC密度地带性分异明显,温带针叶林SOC密度显著高于温带落叶阔叶林,亚热带常绿阔叶林SOC密度显著高于亚热带落叶阔叶林。SOC密度与土壤黏粒、年降水量以及地上净初级生产力呈显著正相关,与土壤pH和年均温呈显著负相关。年降水量与年均温调节天然林SOC输入与输出,土壤pH与黏粒影响天然林SOC积累,对成熟的天然针叶林与常绿阔叶林进行有效保护,有利于增加我国森林土壤碳库。  相似文献   

11.
Abstract: Wood ducks (Aix sponsa) and other species use tree cavities in forested wetlands and adjacent upland forests for nest sites and cover. The availability of tree cavities suitable for nesting is important to the population dynamics of hole-nesting species, but there is little quantitative information on how forest succession and maturation affect densities of suitable nest sites in eastern deciduous forests. Several studies have measured availability of tree cavities for nesting wood ducks, but data on cavity formation and persistence rates are needed to model changes in cavity abundance. We measured abundance and persistence of tree cavities suitable for nesting wood ducks in southern Illinois, USA, during 1993-2002. We simulated changes in abundance of nest cavities in the Mississippi River floodplain and adjacent upland forests using estimates of tree cavity densities by tree-diameter size classes and 10-year cavity persistence rates by tree species. Cavities were disproportionately common in the largest size classes, but tree species varied in their propensity to form cavities. Beech (Fagus grandifolia; 0.41 cavities/tree) and sycamore (Plantanus occidentalis; 0.50 cavities/tree) were prolific cavity producers, whereas a small proportion (0.05 cavities/tree) of cottonwoods (Populus deltoides) contained cavities. Kaplan-Meier estimates of annual and 10-year cavity persistence averaged 0.95 and 0.64, respectively. Cavity persistence also differed among species (P = 0.02): cottonwoods had the lowest (0.54) and sycamores had the highest (0.89) 10-year tree cavity persistence rates. Tree fall (50.0%), cavity floor deterioration (37.5%), and narrowing of the cavity entrance (12.5%) were the most prevalent causes of tree cavity loss. Forest stand projections indicated that cavity abundance will increase up to 34% over recent levels during the first 10 years and by 44% after 50 years. Most of this increase will be contributed by tree species that are not commonly used by wood ducks, but cavities will increase in oaks (Quercus spp.) and beeches as the forest matures into cavity-bearing size classes. Sycamores will steadily contribute cavities, but cottonwood is predicted to provide fewer cavities due to low survival of cavity-bearing size classes. Our results suggest that availability of nest and den sites for cavity-dependent wildlife will increase as eastern deciduous forests mature over the next half century. Cost-effectiveness of artificial nest box programs should be reevaluated in light of projected changes in tree cavity availability as deciduous forests mature in the eastern United States.  相似文献   

12.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

13.
Evidence is presented for a very specific, seasonally recurring tri‐phase carbon isotope pattern in tree rings of broad‐leaf deciduous tree species. It is derived from highly resolved intra‐annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri‐phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C‐value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C‐value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C‐values start rising again. This increase in δ13C marks the gradual switch‐over to storage‐dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri‐phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down‐stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid‐section of the seasonal δ13C pattern.  相似文献   

14.
The above-ground coarse wood productivity of 104 Neotropical forest plots   总被引:9,自引:1,他引:8  
The net primary production of tropical forests and its partitioning between long‐lived carbon pools (wood) and shorter‐lived pools (leaves, fine roots) are of considerable importance in the global carbon cycle. However, these terms have only been studied at a handful of field sites, and with no consistent calculation methodology. Here we calculate above‐ground coarse wood carbon productivity for 104 forest plots in lowland New World humid tropical forests, using a consistent calculation methodology that incorporates corrections for spatial variations in tree‐size distributions and wood density, and for census interval length. Mean wood density is found to be lower in more productive forests. We estimate that above‐ground coarse wood productivity varies by more than a factor of three (between 1.5 and 5.5 Mg C ha?1 a?1) across the Neotropical plots, with a mean value of 3.1 Mg C ha?1 a?1. There appear to be no obvious relationships between wood productivity and rainfall, dry season length or sunshine, but there is some hint of increased productivity at lower temperatures. There is, however, also strong evidence for a positive relationship between wood productivity and soil fertility. Fertile soils tend to become more common towards the Andes and at slightly higher than average elevations, so the apparent temperature/productivity relationship is probably not a direct one. Coarse wood productivity accounts for only a fraction of overall tropical forest net primary productivity, but the available data indicate that it is approximately proportional to total above‐ground productivity. We speculate that the large variation in wood productivity is unlikely to directly imply an equivalent variation in gross primary production. Instead a shifting balance in carbon allocation between respiration, wood carbon and fine root production seems the more likely explanation.  相似文献   

15.
We report on the carbon and oxygen stable isotope composition of fossil tree material collected at the White Mountain locality of the Buchanan Lake Formation on Axel Heiberg Island in the High Arctic of Canada. The fossils are Middle Eocene in age and have been permineralized with carbonate. Microscopic examination of fossils revealed them to be the remains of Metasequoia stems, composed of secondary carbonate (calcite) and original wood intermingled at the cellular level. Because the specimens show little compression, crushing, or tissue degradation, we believe that carbonate permineralization occurred soon after burial, and therefore provides insight into Eocene carbon cycling at the locality. The carbon isotope signature of the carbonate suggests that methanogenesis resulted in a 13C-enriched CO2 pool that equilibrated with soil water and gave rise to unusually 13C-enriched CaCO3. Tree fossil carbonate exhibited strikingly high δ13C values (+4.0 to +7.4‰) compared to published Phanerozoic pedogenic carbonate δ13C values. These δ13C values, in conjunction with fractionation factors (α) previously determined for carbonate precipitation and methanogenic pathways, indicate an Eocene soil CO2 pool containing 80-95% CO2 produced as a by-product of acetate-fermentation methanogenesis. Because methane in the atmosphere is a powerful greenhouse gas, we suggest that methane emissions from Axel Heiberg soils contributed to the relatively warm Arctic climate during the Middle Eocene.  相似文献   

16.
J. Liira  K. Kohv 《Plant biosystems》2013,147(1):211-220
Abstract

We quantified the effects of anthropogenic disturbances on the structure and biodiversity of boreal forests on acidic soils and created a statistically supported rational set of indicators to monitor the stand “naturalness”. For that, we surveyed various traits of tree layer, understory, herb layer, forest floor and several widely accepted biodiversity epiphytic indicators in 252 old‐aged boreal stands in Estonia, mostly dominated by Scots pine or Norway spruce. Multifactorial general linear model analyses showed that many forest characteristics and potential indicators were confounded by the gradient of soil productivity (reflected by the forest site type), local biogeographic gradients and also by stand age. Considering confounding effects, boreal forests in a near‐natural state have more large‐diameter trees (diameter at breast height >40 cm) and larger variety of diameter classes, higher proportion of spruce or deciduous trees, a larger amount of coarse woody debris in various stages, a more closed tree canopy and denser understory than managed mature forests. By increasing light availability above the field layer, forest management indirectly increases the coverage of herbs and lichens on the forest floor but reduces the alpha‐ and beta‐diversity of herbs and the proportion of graminoids. Human disturbances reduce the relative incidence of many commonly accepted biodiversity indicators such as indicator lichens, woodpeckers, wood‐dwelling insects or fungi on trees. The test for the predictive power of characteristics reacting on disturbance revealed that only a fraction of them appeared to be included in a diagnostic easy‐to‐apply set of indicators to assess the nature quality of boreal forest: the amount of dead wood, the proportion of deciduous trees, the presence of specially shaped trees and woodpeckers and, as an indicator of disturbances, the forest herb Melampyrum pratensis. Many of these indicators have already been implemented in practice.  相似文献   

17.
Catastrophic hydraulic failure will likely be an important mechanism contributing to large‐scale tree dieback caused by increased frequency and intensity of droughts under global climate change. To compare the susceptibility of 22 temperate deciduous tree and shrub species to hydraulic failure during a record drought in the southeastern USA, we quantified leaf desiccation, native embolism, wood density, stomatal conductance and predawn and midday leaf water potential at four sites with varying drought intensities. At the two driest sites, there was widespread leaf wilting and desiccation, and most species exhibited predawn leaf water potentials of ≤3 MPa and >60% loss of xylem conductivity in branches. Although species with high wood density were more resistant to cavitation, they had higher levels of native embolism and greater canopy dieback than species with low wood density. This unexpected result can be explained by the failure of species with dense wood to avert a decline in water potential to dangerous levels during the drought. Leaf water potential was negatively correlated with wood density, and the relationship was strongest under conditions of severe water deficit. Species with low wood density avoided catastrophic embolism by relying on an avoidance strategy that involves partial drought deciduousness, higher sensitivity of stomata to leaf water potential and perhaps greater rooting depth. These species therefore maintained water potential at levels that ensured a greater margin of safety against embolism. These differences among species may mediate rapid shifts in species composition of temperate forests if droughts intensify due to climate change.  相似文献   

18.
The Grain for Green Program (GGP) was the most all‐embracing program of ecological reconstruction implemented in China. To estimate carbon storages and carbon sequestration potentials of the GGP forests, the study presented in the paper collected data spanning from 1999 to 2010, such as tree species, tree planting area relevant to the GGP, empirical growth curves suitable for different planted tree species in China, as well as wood density (WD), biomass expansion factor (BEF), carbon fraction (CF) of different trees species, and estimated the carbon storages of the biomasses of GGP forests from 1999 to 2050. It showed that the total carbon storage of the biomass of GGP forests was 320.29 Tg upon the GGP completion in 2010; the total carbon sequestration is higher during the early GGP‐implementation stage than at the late GGP‐implementation stage, and the annual mean carbon sequestration of GGP forests was 26.69 Tg/year. The potential of GGP forests as carbon sink presented an increasing increment. In China, the potential increments of GGP forests as carbon sinks were estimated to be 397.34, 604.00, 725.53, and 808.90 Tg in 2020, 2030, 2040, and 2050, respectively, and the carbon sequestration rates were 1.72, 0.89, 0.52, and 0.36 Mg ha?1 year?1, respectively, corresponding to 2010s, 2020s, 2030s, and 2040s. Therefore, the GGP forests had bigger carbon sequestration capacities and potentials in China.  相似文献   

19.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

20.
Aim New protected areas should consider safeguarding high conservation value sites based on multiple criteria and not just the presence of a single endangered or charismatic species. However, the extent to which complementary criteria coincide is usually unknown. We use the case of Guaiacum sanctum (Zygopyllaceae), an endangered timber tree species, to explore whether the protection of forests where this species is most abundant would meet other complementary conservation goals, such as capturing regional plant biodiversity, protecting other threatened/endemic species or safeguarding ecosystem services. Location Yucatan Peninsula, southern Mexico. Methods We conducted an analysis of the structure, composition and diversity of tree communities (including stems ≥5 cm dbh) at eight G. sanctum forest sites. We identified endemic and threatened tree species and quantified above‐ground tree biomass and carbon storage in these G. sanctum forests. Results Guaiacum sanctum forests contain 35–59 tree species on plots as small as 1000 m2. The species composition of tree communities changed rapidly (high β‐diversity) across soil boundaries and rainfall regimes. Twenty‐one endemic and eight threatened tree species were recorded in our inventories. Individuals of G. sanctum represented up to 55% of the above‐ground carbon for trees ≥5 cm dbh. The high basal area of G. sanctum forests plus the high wood density, abundance, large size and longevity (more than 500 years) of G. sanctum and other tree species enhance the potential importance of these forests for carbon storage. Main conclusions A conservation strategy focused on protecting important populations of G. sanctum in the Yucatan Peninsula would have significant co‐benefits for conservation of regional tree species biodiversity and provision of critical ecosystem services. Our study illustrates a multiple criteria approach useful for the selection of areas with high conservation value on the basis of endemic, threatened species, species richness and ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号