首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non‐woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid‐shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one‐size‐fits‐all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.  相似文献   

2.
3.
Objectives: To (1) assess the strength of evidence for the role of termites in vegetation heterogeneity in African savannas, and (2) identify the mechanisms by which termites induce such heterogeneity. Location: African savannas. Methods: We conducted a review of the literature, a meta‐analysis and qualitative systems analysis to identify mechanisms to explain the observed patterns. Results: The review provided evidence for termite‐induced heterogeneity in floristic composition and vegetation patterning in savannas across Africa. Termites induced vegetation heterogeneity directly or indirectly through their nest‐building and foraging activities, associated nutrient cycling and their interaction with mammalian herbivores and fire. The literature reviewed indicated that termite mounds essentially act as islands of fertility, which are responsible for ecosystem‐level spatial heterogeneity in savannas. This was supported by the meta‐analysis, which demonstrated that mounds of Ancistrotermes, Macrotermes, Odontotermes (family Macrotermitinae), Cubitermes (family Termitinae) and Trinervitermes (Nasutitermitinae) are significantly enriched in clay (75%), carbon (16%), total nitrogen (42%), calcium (232%), potassium (306%) and magnesium (154%) compared to the surrounding savanna soil. Conclusions: Termite activity is one of the major factors that induce vegetation patterning in African savannas. The implications of this are discussed and research questions for future studies and modelling efforts are indicated.  相似文献   

4.
Aim Two of the oldest observations in plant geography are the increase in plant diversity from the poles towards the tropics and the global geographic distribution of vegetation physiognomy (biomes). The objective of this paper is to use a process‐based vegetation model to evaluate the relationship between modelled and observed global patterns of plant diversity and the geographic distribution of biomes. Location The global terrestrial biosphere. Methods We implemented and tested a novel vegetation model aimed at identifying strategies that enable plants to grow and reproduce within particular climatic conditions across the globe. Our model simulates plant survival according to the fundamental ecophysiological processes of water uptake, photosynthesis, reproduction and phenology. We evaluated the survival of an ensemble of 10,000 plant growth strategies across the range of global climatic conditions. For the simulated regional plant assemblages we quantified functional richness, functional diversity and functional identity. Results A strong relationship was found (correlation coefficient of 0.75) between the modelled and the observed plant diversity. Our approach demonstrates that plant functional dissimilarity increases and then saturates with increasing plant diversity. Six of the major Earth biomes were reproduced by clustering grid cells according to their functional identity (mean functional traits of a regional plant assemblage). These biome clusters were in fair agreement with two other global vegetation schemes: a satellite image classification and a biogeography model (kappa statistics around 0.4). Main conclusions Our model reproduces the observed global patterns of plant diversity and vegetation physiognomy from the number and identity of simulated plant growth strategies. These plant growth strategies emerge from the first principles of climatic constraints and plant functional trade‐offs. Our study makes important contributions to furthering the understanding of how climate affects patterns of plant diversity and vegetation physiognomy from a process‐based rather than a phenomenological perspective.  相似文献   

5.
6.
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change‐induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change‐induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water‐limited ecosystems.  相似文献   

7.
Question: Woody plant and grass interactions in savannas have frequently been studied from the perspective of the response of one growth form on the other but seldom evaluated as two‐way interactions. What causes woody plant encroachment in semi‐arid savannas and what are the competitive responses of tree seedlings and grasses on rocky and sandy substrates? Methods: In this greenhouse study, we investigated the influence of substrate and grazing on responses to interspecific competition by tree seedlings and grasses. We measured competitive/facilitative responses on biomass and nutrient status of tree seedlings and grasses grown together. Results: Interspecific competition suppressed growth of trees and grasses. Tree seedlings and uncut grass accumulated double the biomass when grown without competition relative to when they competed. Competitive responses varied on different substrates. Grass biomass on rocky substrate showed no response to tree competition, but appeared to be facilitated by trees on sandy substrate. Grass clipping resulted in higher tree seedling biomass on rocky substrate, but not on sandy substrate. There was a positive response of grass nutrient status to competition from tree seedlings. Conclusion: Selective grass herbivory in the absence of browsing or suppression of shade‐intolerant grasses by trees are commonly cited reasons behind bush encroachment in savannas. We show that grazing may confer a competitive advantage to tree seedlings and promote bush encroachment more readily on rocky substrates. This may be due to the imposed sharing of the soil depth niche on rocky substrates, whereas possible niche separation on sandy substrates minimizes the advantage conferred by reduced competition.  相似文献   

8.
9.
Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open‐top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push–pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography–mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2‐fold increase in monoterpene and 5‐fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emission potentials and composition.  相似文献   

10.
Savannahs are a mixture of trees and grasses often occurring as alternate states to closed forests. Savannah fires are frequent where grass productivity is high in the wet season. Fires help maintain grassy vegetation where the climate is suitable for woodlands or forests. Saplings in savannahs are particularly vulnerable to topkill of above-ground biomass. Larger trees are more fire-resistant and suffer little damage when burnt. Recruitment to large mature tree size classes depends on sapling growth rates to fire-resistant sizes and the time between fires. Carbon dioxide (CO(2)) can influence the growth rate of juvenile plants, thereby affecting tree recruitment and the conversion of open savannahs to woodlands. Trees have increased in many savannahs throughout the world, whereas some humid savannahs are being invaded by forests. CO(2) has been implicated in this woody increase but attribution to global drivers has been controversial where changes in grazing and fire have also occurred. We report on diverse tests of the magnitude of CO(2) effects on both ancient and modern ecosystems with a particular focus on African savannahs. Large increases in trees of mesic savannahs in the region cannot easily be explained by land use change but are consistent with experimental and simulation studies of CO(2) effects. Changes in arid savannahs seem less obviously linked to CO(2) effects and may be driven more by overgrazing. Large-scale shifts in the tree-grass balance in the past and the future need to be better understood. They not only have major impacts on the ecology of grassy ecosystems but also on Earth-atmosphere linkages and the global carbon cycle in ways that are still being discovered.  相似文献   

11.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

12.
13.
Although local increases in woody plant cover have been documented in arid and semiarid ecosystems worldwide, there have been few long‐term, large‐scale analyses of changes in woody plant cover and aboveground carbon (C) stocks. We used historical aerial photography, contemporary Landsat satellite data, field observations, and image analysis techniques to assess spatially specific changes in woody vegetation cover and aboveground C stocks between 1937 and 1999 in a 400‐km2 region of northern Texas, USA. Changes in land cover were then related to topo‐edaphic setting and historical land‐use practices. Mechanical or chemical brush management occurred over much of the region in the 1940–1950s. Rangelands not targeted for brush management experienced woody cover increases of up to 500% in 63 years. Areas managed with herbicides, mechanical treatments or fire exhibited a wide range of woody cover changes relative to 1937 (?75% to + 280%), depending on soil type and time since last management action. At the integrated regional scale, there was a net 30% increase in woody plant cover over the 63‐year period. Regional increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) and least on upland clay loams (15%). Allometric relationships between canopy cover and aboveground biomass were used to estimate net aboveground C storage changes in upland (nonriparian) portions of regional landscapes. Carbon stocks increased from 380 g C m?2 in 1937 to 500 g C m?2 in 1999, a 32% net increase across the 400 km2 region over the 63‐year period. These plant C storage change estimates are highly conservative in that they did not include the substantial increases in woody plant cover observed within riparian landscape elements. Results are discussed in terms of implications for ‘carbon accounting’ and the global C cycle.  相似文献   

14.

Aim

The aims of this study were to (1) estimate current rates of woody encroachment across African savannas; (2) identify relationships between change in woody cover and potential drivers, including water constraints, fire frequency and livestock density. The found relationships led us to pursue a third goal: (3) use temporal dynamics in woody cover to estimate potential woody cover.

Location

Sub‐Saharan African savannas.

Methods

The study used very high spatial resolution satellite imagery at sites with overlapping older (2002–2006) and newer (2011–2016) imagery to estimate change in woody cover. We sampled 596 sites in 38 separate areas across African savannas. Areas with high anthropogenic impact were avoided in order to more clearly identify the influence of environmental factors. Relationships between woody cover change and potential drivers were identified using linear regression and simultaneous autoregression, where the latter accounts for spatial autocorrelation.

Results

The mean annual change in woody cover across our study areas was 0.25% per year. Although we cannot explain the general trend of encroachment based on our data, we found that change rates were positively correlated with the difference between potential woody cover and actual woody cover (a proxy for water availability; < .001), and negatively correlated with fire frequency (p < .01). Using the relationship between rates of encroachment and initial cover, we estimated potential woody cover at different rainfall levels.

Main conclusions

The results indicate that woody encroachment is ongoing and widespread across African savannas. The fact that the difference between potential and actual cover was the most significant predictor highlights the central role of water availability and tree–tree competition in controlling change in woody populations, both in water‐limited and mesic savannas. Our approach to derive potential woody cover from the woody cover change trajectories demonstrates that temporal dynamics in woody populations can be used to infer resource limitations.  相似文献   

15.
The life‐history strategies of some species make them strong candidates for rapid exploitation of novel habitat under new climate regimes. Some early‐responding species may be considered invasive, and negatively impact on ‘naïve’ ecosystems. The barrens‐forming sea urchin Centrostephanus rodgersii is one such species, having a high dispersal capability and a high‐latitude range margin limited only by a developmental temperature threshold. Within this species’ range in eastern Australian waters, sea temperatures have increased at greater than double the global average rate. The coinciding poleward range extension of C. rodgersii has caused major ecological changes, threatening reef biodiversity and fisheries productivity. We investigated microsatellite diversity and population structure associated with range expansion by this species. Generalized linear model analyses revealed no reduction in genetic diversity in the newly colonized region. A ‘seascape genetics’ analysis of genetic distances found no spatial genetic structure associated with the range extension. The distinctive genetic characteristic of the extension zone populations was reduced population‐specific FST, consistent with very rapid population expansion. Demographic and genetic simulations support our inference of high connectivity between pre‐ and post‐extension zones. Thus, the range shift appears to be a poleward extension of the highly‐connected rangewide population of C. rodgersii. This is consistent with advection of larvae by the intensified warm water East Australian current, which has also increased Tasmanian Sea temperatures above the species’ lower developmental threshold. Thus, ocean circulation changes have improved the climatic suitability of novel habitat for C. rodgersii and provided the supply of recruits necessary for colonization.  相似文献   

16.
The hydrology of riparian areas changes rapidly these years because of climate change‐mediated alterations in precipitation patterns. In this study, we used a large‐scale in situ experimental approach to explore effects of drought and flooding on plant taxonomic diversity and functional trait composition in riparian areas in temperate Europe. We found significant effects of flooding and drought in all study areas, the effects being most pronounced under flooded conditions. In near‐stream areas, taxonomic diversity initially declined in response to both drought and flooding (although not significantly so in all years) and remained stable under drought conditions, whereas the decline continued under flooded conditions. For most traits, we found clear indications that the functional diversity also declined under flooded conditions, particularly in near‐stream areas, indicating that fewer strategies succeeded under flooded conditions. Consistent changes in community mean trait values were also identified, but fewer than expected. This can have several, not mutually exclusive, explanations. First, different adaptive strategies may coexist in a community. Second, intraspecific variability was not considered for any of the traits. For example, many species can elongate shoots and petioles that enable them to survive shallow, prolonged flooding but such abilities will not be captured when applying mean trait values. Third, we only followed the communities for 3 years. Flooding excludes species intolerant of the altered hydrology, whereas the establishment of new species relies on time‐dependent processes, for instance the dispersal and establishment of species within the areas. We expect that altered precipitation patterns will have profound consequences for riparian vegetation in temperate Europe. Riparian areas will experience loss of taxonomic and functional diversity and, over time, possibly also alterations in community trait responses that may have cascading effects on ecosystem functioning.  相似文献   

17.
Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes. We use multiseason Landsat data in conjunction with satellite L‐band radar backscatter data to estimate the extent of woodlands and grasslands in 1990 and 2013. The method employed allows for a unique, nationwide measurement of transitions between grassland and woodland classes in recent decades. We estimate that during the 23‐year study period, woodlands have replaced grasslands over ~57 000 km2 and conversely that grasslands have replaced woodlands over ~30 000 km2, a net increase in the extent of woodland of ~27 000 km2 and an annual increase of 0.22%. The changes varied markedly across the country; areas receiving over 500 mm mean annual precipitation showed higher rates of woodland expansion than regions receiving <500 mm (0.31% yr?1 and 0.11% yr?1, respectively). Protected areas with elephants showed clear loss of woodlands (?0.43% yr?1), while commercial rangelands and traditional rangelands showed increases in woodland extent (>0.19% yr?1). The woodland change map presented here provides a unique opportunity to test the numerous models of woody plant encroachment at a national/regional scale.  相似文献   

18.
19.
20.
Bounded by ocean and desert, the isolated, predominately Mediterranean‐climate region of south‐western Australia (SWA) includes nine bioregions (circa 44 million hectares). The ecological integrity of the landscapes in this global biodiversity hotspot has been compromised by deforestation, fragmentation, exploitation, and introduced biota. Nature and degree of transformation varies between four interconnected landscapes (Swan Coastal Plain; South‐west Forests; Wandoo Woodlands; and Great Western Woodlands). A Gondwanan perspective emphasizes a venerable biota and a cultural component to deep time. The particular importance of remnants and protected areas is recognized in restoring ecological integrity to Gondwanan landscapes. The nature and magnitude of the restoration task in these ancient, and neighboring, landscapes require higher levels of investment and more time than do recent landscapes. The protection, conservation, restoration, and rehabilitation of ecological integrity require multiple approaches in each landscape as well as consideration of the whole. Active conservation of biota and minimizing the impact of industrial‐ and agricultural‐use are priorities. Integrating a climate focus and rethinking fire are critical restoration considerations to future trajectories under anthropogenic climate change. A legislative mandate to coordinate industrial‐scale restoration and active conservation to build from protected areas must become a societal priority to restore ecological integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号