首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
土壤病毒生态学研究方法   总被引:4,自引:1,他引:4  
韩丽丽  于丹婷  贺纪正 《生态学报》2017,37(6):1749-1756
病毒是地球上最丰富的生物实体,每克土壤中可包含数以亿计的病毒,它不仅影响土壤中其它微生物的群落组成、土壤元素的生物地球化学循环,还会影响土壤微生物的物种进化,甚至影响植物、动物和人体健康。目前人们对土壤中病毒的种类及丰度、分布特征以及功能引起的生态环境效应还知之甚少。在概述病毒生态学研究方法的基础上,对土壤病毒的提取、纯化、定量及分子生态学方法等基本流程进行了比较分析,以期建立一套快速简便、高效稳定的适用于土壤病毒研究的方法,并用于研究土壤病毒的多样性及分布特征,探讨病毒在环境中的生存和传播机制,为土壤病毒的防控及开发利用提供支撑。  相似文献   

2.
A concise history of rabies vaccine production methods, including worldwide production methods in animals and cell culture are presented. Received 22 January 1996/ Accepted in revised form 03 February 1997  相似文献   

3.
Vaccine manufacturing has conventionally been performed by the developed world using traditional unit operations like filtration and chromatography. There is currently a shift in the manufacturing of vaccines to the less developed world, requiring unit operations that reduce costs, increase recovery, and are amenable to continuous manufacturing. This work demonstrates that mannitol can be used as a flocculant for an enveloped and nonenveloped virus and can purify the virus from protein contaminants after microfiltration. The recovery of the virus ranges from 58 to 96% depending on virus, the filter pore size, and the starting concentration of the virus. Protein removal of 80% was achieved for the small nonenveloped virus using a 0.1 µm filter because proteins were not flocculated with the virus and flowed through the filter. It is hypothesized that mannitol dehydrates the viral surface by controlling the water structure surrounding the virus. Without the ability to become compact, as occurs with proteins, the virus aggregates in the presence of osmolytes and proteins do not. Osmolyte flocculation is a scalable process using high flux microfilters. It has been applied to both an enveloped and nonenveloped virus, making this process friendly to a variety of vaccine and gene therapy products. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1027–1035, 2018  相似文献   

4.
Advances in cell culture engineering, cell metabolism, bioreactor design and operation, and downstream processing will all positively impact the bioprocessing of viral vectors. Design of appropriate vectors and tailoring of packaging cells to support more productive infections will be of paramount importance for production of high-titer and high-quality vectors. Furthermore, quantitative analysis of the infection parameters during virus propagation, such as time of infection, multiplicity of infection, the length of replication cycle, virus half-life, and burst size, will also be important to the process optimization. Finally, procedures for separation, purification and formulation of vector preparations have to be further developed.  相似文献   

5.
6.
Li D  Lott WB  Lowry K  Jones A  Thu HM  Aaskov J 《PloS one》2011,6(4):e19447
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.  相似文献   

7.
The respiratory disease COVID-19 is caused by the coronavirus SARS-CoV-2. Here we report the discovery of ethacridine as a potent drug against SARS-CoV-2 (EC50 ~ 0.08 μM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescence assay. Plaque assays, RT-PCR and immunofluorescence imaging at various stages of viral infection demonstrate that the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Consistently, ethacridine is effective in various cell types, including primary human nasal epithelial cells that are cultured in an air-liquid interface. Taken together, our work identifies a promising, potent, and new use of the old drug via a distinct mode of action for inhibiting SARS-CoV-2.  相似文献   

8.
Regenerative medicine therapies will allow in the future the transplant of cells of human origin in some diseases that until now have been incurable. The assurance of the safety and quality, especially from a microbiological point of view, is very important for these therapeutic products. Depending on the starting material, there are several sources of pathogen presence, mainly human viruses. Also, the use of feeders of animal origin as layers in which the stem cells can grow may permit the transmission of animal pathogens to these cells. However, cell sources are limited due to the low availability of spare in vitro fecundation human embryos and the low rate of success in the derivation of human stem cell lines. Thus, in several cases, it will be necessary to evaluate the possibility of removing or inactivating these microorganisms. In this paper, we summarize the main methods of viral clearance and we have provided an overview of the main features taking into account in the viral clearance techniques.  相似文献   

9.
Cell killing by Frog Virus 3 was assayed after infection of chinese hamster ovary cells under non permissive conditions for virus multiplication. The kinetics of the loss in the efficiency of colony formation as a function of the virus multiplicity indicated that infection of a cell with a single viral particle brought about cell death. About 15 percent of the cells exhibited transient resistance to killing by single viral particles. Treatment of cells with proteins solubilized from Frog Virus 3 also resulted in cell killing with one hit kinetics thus implying that the interaction with a single viral subunit sufficed to entail cell death.  相似文献   

10.
Uptake of viral particles by oyster leukocytes in vitro   总被引:1,自引:0,他引:1  
  相似文献   

11.
Rotavirus diarrhea is caused by nonreplicating viral particles.   总被引:3,自引:2,他引:1       下载免费PDF全文
R D Shaw  S J Hempson    E R Mackow 《Journal of virology》1995,69(10):5946-5950
  相似文献   

12.
Electron microscopy after negative staining of SA11-infected cell homogenates revealed that most of the viral particles are associated with membrane-like material. Many of the particles seemed to be fully enveloped in a membrane. This association could also be detected by the observed cosedimentation of viral proteins and cell membranes. Pulse-chase experiments showed that viral glycoproteins rapidly associate with membranes, whereas most of the structural proteins appearing in the soluble fraction immediately after the pulse were slowly chased into the membrane fraction. The membranes could be further fractionated into at least four fractions differing in density and containing a different distribution of viral proteins. Also, the distribution of label into each of these membrane fractions changed after long chase periods. The inhibition of glycosylation with tunicamycin yielded viral particles without an outer layer, but did not affect the described association with membranes. The possible relationship of this finding to the maturation of the virion is discussed.  相似文献   

13.
Adsorption of viral particles from the blood plasma of patients with viral hepatitis B and C on modified nanodiamonds (MNDs) was shown in the in vitro experiments. PCR method showed the treatment of plasma with MNDs leads to a decrease in the viral load by 2–3 orders of magnitude or more in both cases studied. These results make it possible to predict the applicability of MNDs for the development of new technologies of hemodialysis and plasmapheresis for binding and removal of viral particles from the blood of infected patients.  相似文献   

14.
15.
16.
17.
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity, many capsid types form as homogenous populations of precise geometrical assemblies. This is important in both medicine, where well-defined therapeutics are critical for drug performance and federal approval, and nanotechnology, where precise placement affects the properties of the desired material. Here we review the production of viruses and virus-like particles with methods for selecting and manipulating the size, surface chemistry, assembly state, and interior cargo of capsid. We then discuss many of the applications used in research today and the potential commercial and therapeutic products from engineered viral capsids.  相似文献   

18.
Production of filterable particles by Cellvibrio gilvus   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

19.
20.
Marginal zone (MZ) B cells are thought to be responsible for the first wave of Abs against bacterial Ags. In this study, we assessed the in vivo response of MZ B cells in mice immunized with viral particles derived from the RNA phage Qbeta. We found that both follicular (FO) and MZ B cells responded to immunization with viral particles. MZ B cells responded with slightly faster kinetics, but numerically, FO B cells dominated the response. B1 B cells responded similarly to MZ B cells. Both MZ and FO B cells underwent isotype switching, with MZ B cells again exhibiting faster kinetics. In fact, almost all Qbeta-specific MZ B cells expressed surface IgG by day 5. Histological analysis demonstrated that a population of activated B cells remain associated with the MZ, probably due to the elevated integrin levels expressed by these cells. Thus, both MZ and FO B cells respond with rapid proliferation to viral infection and both populations undergo isotype switching, but MZ B cells remain in the MZ and may be responsible for local Ab production, opsonizing pathogens entering the spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号