首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The probability of long‐term persistence of a population is strongly determined by adult survival rates, but estimates of survival are currently lacking for most species of birds in the tropical Andes, a global biodiversity hotspot. We calculated apparent survival rates of birds in the Ecuadorian tropical Andes using a moderately long‐term (11 yr) capture–recapture dataset from three habitats that varied in how much they had been modified by human activities (native forest, introduced forest, and shrubs). We fit mark–recapture models for 28 species with habitat as a covariable. For all species, recapture rates between sampling sessions were low and varied from 0.04 for Rainbow Starfrontlets (Coeligena iris) to 0.41 for Stripe‐headed Brushfinches (Arremon assimilis) when averaged across all occupied habitats. Annual survival rates varied from 0.07 for Black‐crested Warblers (Margarornis squamiger) to 0.75 for Violet‐throated Metaltails (Metallura baroni). We found no significant differences in survival rates either among habitats or species grouped by habitat specialization. Because we found similar survival rates in native forest and human‐modified habitats, our results support those of recent studies concerning the potential value of secondary habitats for the conservation of some species of birds in the tropics. However, our conclusions are tempered by the uncertainty around the estimates of survival rates. Despite the relatively long‐term nature of our study, obtaining survival estimates for bird species in this region was challenging, and either more years of study or modification of field protocols may be needed to obtain more precise survival estimates.  相似文献   

2.
  • 1 Habitats associated with humans, and gardens in particular, may prove to be important for populations of certain mammal species. However, means for measuring change in these populations are lacking.
  • 2 This paper uses power analyses to examine the potential for mammal observation data, gathered through an extensive volunteer‐based survey of garden birds, to provide measures of population change within garden habitats at both national and regional levels.
  • 3 Analyses show that this survey protocol has sufficient power to detect a decline in presence of between 5% and 40% at the national level for 20 of the 24 species included in this study. These results demonstrate that data from volunteer surveys allow the annual monitoring of garden use by a range of mammal species within Britain, and highlight the wider potential of such schemes worldwide.
  相似文献   

3.
4.
Selecting a sampling design to monitor multiple species across a broad geographical region can be a daunting task and often involves tradeoffs between limited resources and the accurate estimation of population abundance and occurrence. Since the 1950s, biological atlases have been implemented in various regions to document the occurrence of plant and animal species. As next‐generation atlases repeat original surveys, investigators often seek to raise the rigour of atlases by incorporating species abundances. We present a repeatable framework that incorporates existing monitoring data, hierarchical modelling and sampling simulations to augment existing atlas occurrence and breeding status maps with a secondary sampling of species abundances. Using existing information on three bird species with varying abundance and detectability, we evaluated several sampling scenarios for the 2nd Wisconsin Breeding Bird Atlas. In general, we found that most sampling schemes produced accurate mean statewide abundance estimates for species with medium to high abundance and detection probability, but estimates varied significantly for species with low abundance and low detection probability. Our approach provided a statewide point‐count sampling design that: provided precise and unbiased abundance estimates for species of varied prevalence and detectability; ensured suitable spatial coverage across the state and its habitats; and reduced spending on total survey costs. Our framework could benefit investigators conducting atlases and other broad‐scale avian surveys that seek to add systematic, multi‐species sampling for estimating density and abundance across broad geographical regions.  相似文献   

5.
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long‐term stable habitats. The variability of complex, short‐term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.  相似文献   

6.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658‐bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC‐based hypothesis testing to complement phylogeographic studies on non‐model species.  相似文献   

7.
Sandhill cranes (Antigone canadensis) were broadly extirpated from much of their historical range in North America at the beginning of the twentieth century. Various conservation-related legislation, such as the United States Migratory Bird Treaty Act, have assisted with population recovery. The eastern population of sandhill cranes has been growing rapidly since the 1980s and is thought to have expanded its geographic range to Quebec, Canada. Understanding the colonization and habitat use by the species in previously unoccupied breeding areas is necessary to develop and apply management measures. Using a dynamic occupancy modeling approach, we investigated the recent colonization and extirpation patterns of sandhill cranes in Quebec from 2004–2019. We combined data from 3 data sets (helicopter surveys, breeding bird atlas surveys, and eBird) to increase the spatial coverage and the number of species occurrence records while accounting for imperfect detection probability. Detection probability was highest for the helicopter survey (0.70), whereas the 2 other data sets had relatively low detection levels (0.10–0.26). Based on a simulation study, we found that excluding the eBird data from the analysis produced more biased estimates than excluding the atlas and helicopter survey data sets. Throughout the study, sandhill cranes seemed to have completed their colonization of western Quebec and only recently started to nest in eastern areas. Initial occupancy increased with wetland cover and colonization probability increased weakly with the cover of agricultural areas, suggesting that in our study area sandhill cranes rely essentially on natural wetlands during the breeding season.  相似文献   

8.
When sighting‐based surveys to estimate population densities of large herbivores in tropical dense forests are not practical or affordable, surveys that rely on animal dung are sometimes used. This study tested one such dung‐based method by deriving population densities from observed dung densities of six large herbivores (chital, elephant, gaur, muntjac, sambar, and wild pig) in two habitats, dry deciduous forests (DDF) and moist deciduous forests (MDF), within Nagarahole National Park, southern India. Using the program DUNGSURV, dung pile counts, decay rates estimated from field experiments, and defecation rates derived from literature were analyzed together by a model that allows for random events affecting dung decay. Densities of chital were the highest, followed by sambar. Wild pig densities were similar in the two habitats, sambar densities were higher in DDF, and densities of the other species were higher in MDF than in DDF. We compared DUNGSURV estimates with densities estimated using distance sampling in the same season. DUNGSURV estimates were substantially higher for all species in both habitats. These differences highlight the challenges that researchers face in computing unbiased estimates of dung decay rates and in relying on defecation rates from literature. Besides the elephant, this study is the first to rigorously test the efficacy of using a dung‐based approach to estimate densities of large herbivore species in Asia, and based on this evaluation, we provide specific recommendations to address issues that require careful consideration before observed dung densities are used to derive animal densities. Our results underline the need for an experimental study of a known population in a fenced reserve to validate the true potential of using dung‐based approaches to estimate population densities.  相似文献   

9.
Estimating the size of bird populations is central to effective conservation planning and prudent management. I updated estimated regional bird populations for the East Gulf Coastal Plain of Mississippi using data from 275 North American Breeding Bird Surveys from 2009 to 2013. However, regional bird populations estimated from count surveys of breeding birds may be biased due to lack of empirical knowledge of the distance at which a species is effectively detected and the probability of detecting a species if it is present. I used data recorded within two distance classes (0–50 m and >50–400 m) and three 1‐min time intervals on 130 Breeding Bird Surveys to estimate detection probability and effective detection distance for 77 species. Incorporating these empirical estimates of detection probability and detection distance resulted in estimated regional populations for these species that were markedly greater than regional populations estimated without species‐specific estimates of detection parameters. Using the same Breeding Bird Survey data, I also estimated probability of site occupancy for 66 species and extrapolated this to the proportion of area occupied in the East Gulf Coastal Plain of Mississippi. I combined the area occupied with the reported range of breeding territory size for 54 species to obtain independent estimates of regional bird populations. Although the true population of these species is unknown, estimated populations that incorporated empirical estimates of detection probability and detection distance were more likely to be within the range of independently estimated, occupancy‐based, regional population estimates than were population estimates that lacked empirical detection and distance information.  相似文献   

10.
Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution dataset mergers, such as the one exemplified here, can serve as a baseline towards comprehensive species distribution datasets.  相似文献   

11.
Question: What are the differences in trait compositions that enable native plants to colonise comparable natural and man‐made habitats? Are these traits independent of phylogenetic relationships between species? Location: Czech Republic. Methods: The relative importance of biological, ecological and distributional traits of native species was studied, using a dataset of 75 species growing in rock and wall habitats in the Czech Republic. Species preferences for individual habitats due to climatic conditions and proportions of different vegetation types in their surroundings were partialled out using partial canonical correspondence analysis. The pattern of plant traits along a gradient from natural rock habitats to secondary wall habitats was analysed using regression trees and generalized linear models with and without phylogenetic correction. Results: The most common native species colonising rock habitats are phanerophytes, mostly woody juveniles, with a CSR life strategy and most are adapted to epizoochory. Summer green leaves, annual life span, CR life strategy, reproduction mostly by seeds and dispersal by ants are all traits positively associated with the ability of species to colonise wall habitats. These species are also characterised by their high demand for nutrients, temperature, base‐rich substrates and light. Biological and ecological traits are more important for colonising new habitats than traits related to species dispersal ability or phylogenetic relationships between species. Biological and ecological traits alone explained 29.3% of variability in the species dataset, while dispersal characteristics and phylogeny alone explained 9.1% and 4.8%, respectively. Conclusions: We outline how the process of environmental filtering determines native species assemblages and identify a set of species traits that enable them to persist in particular habitats. We conclude that although urbanisation generally results in loss of natural habitats, there are new, man‐made habitats potentially suitable for native species.  相似文献   

12.
An important factor that hinders the management of non‐native species is a general lack of information regarding the biogeography of non‐natives, and, in particular, their rates of turnover. Here, we address this research gap by analysing differences in temporal beta‐diversity (using both pairwise and multiple‐time dissimilarity metrics) between native and non‐native species, using a novel time‐series dataset of arthropods sampled in native forest fragments in the Azores. We use a null model approach to determine whether temporal beta‐diversity was due to deterministic processes or stochastic colonisation and extinction events, and linear modelling selection to assess the factors driving variation in temporal beta‐diversity between plots. In accordance with our predictions, we found that the temporal beta‐diversity was much greater for non‐native species than for native species, and the null model analyses indicated that the turnover of non‐native species was due to stochastic events. No predictor variables were found to explain the turnover of native or non‐native species. We attribute the greater turnover of non‐native species to source‐sink processes and the close proximity of anthropogenic habitats to the fragmented native forest plots sampled in our study. Thus, our findings point to ways in which the study of turnover can be adapted for future applications in habitat island systems. The implications of this for biodiversity conservation and management are significant. The high rate of stochastic turnover of non‐native species indicates that attempts to simply reduce the populations of non‐native species in situ within native habitats may not be successful. A more efficient management strategy would be to interrupt source‐sink dynamics by improving the harsh boundaries between native and adjacent anthropogenic habitats.  相似文献   

13.
Quantitative comparisons of distribution and abundance of exotic species in their native and non‐native ranges represent a first step when studying invaders. However, this approach is rarely applied 2 particularly to tree species. Using biogeographical contrasts coupled with regional dispersal surveys, we assessed whether two exotic maple tree species, Acer negundo and Acer platanoides, can be classified as invasive in the non‐native regions surveyed. We also examined the importance of biogeography in determining the degree of invasion by exotic species using this reciprocal approach. Local‐scale surveys were conducted in a total of 34 forests to compare density, relative abundance, age structure of native and introduced populations, and whether the two introduced maple species negatively affected native tree species density. Regional‐scale surveys of a total of 136 forests were then conducted to assess distribution in the introduced regions. Introduced populations of A. negundo were denser than populations measured in their native range and negatively related to native tree species density. Age structure did not differ between regions for this species. At the regional scale, this species has invaded most of the riparian corridors sampled in France. Conversely, the density of A. platanoides introduced populations was similar to that of native populations and was not related to native tree species density. Although seedling recruitment was higher away than at home, this species has invaded only 9% of the forests sampled in southern Ontario, Canada. Although reported invasive, these two exotic maple species differed in their relative demographic parameters and regional spread. Acer negundo is currently invasive in southern France while A. platanoides is not aggressively invasive in southern Ontario. Importantly, this study effectively demonstrates that biogeography through structured contrasts provide a direct means to infer invasion of exotic species.  相似文献   

14.
Dispersal is thought to be an important process determining range size, especially for species in highly spatially structured habitats, such as tropical reef fishes. Despite intensive research efforts, there is conflicting evidence about the role of dispersal in determining range size. We hypothesize that traits related to dispersal drive range sizes, but that complete and comprehensive datasets are essential for detecting relationships between species’ dispersal ability and range size. We investigate the roles of six traits affecting several stages of dispersal (adult mobility, spawning mode, pelagic larval duration (PLD), body size, aggregation behavior, and circadian activity), in explaining range size variation of reef fishes in the Tropical Eastern Pacific (TEP). All traits, except for PLD (148 species), had data for all 497 species in the region. Using a series of statistical models, we investigated which traits were associated with large range sizes, when analyzing all TEP species or only species with PLD data. Furthermore, using null models, we analyzed whether the PLD‐subset is representative of the regional species pool. Several traits affecting dispersal ability were strongly associated with range size, although these relationships could not be detected when using the PLD‐subset. Pelagic spawners (allowing for passive egg dispersal) had on average 56% larger range sizes than nonpelagic spawners. Species with medium or high adult mobility had on average a 25% or 33% larger range, respectively, than species with low mobility. Null models showed that the PLD‐subset was nonrepresentative of the regional species pool, explaining why model outcomes using the PLD‐subset differed from the ones based on the complete dataset. Our results show that in the TEP, traits affecting dispersal ability are important in explaining range size variation. Using a regionally complete dataset was crucial for detecting the theoretically expected, but so far empirically unresolved, relationship between dispersal and range size.  相似文献   

15.
Abstract Population density estimates and patterns of habitat selection by sympatric red‐bellied pademelons (Thylogale billardierii (Marsupialia: Macropodidae)) and red‐necked wallabies (Macropus rufogriseus rufogriseus (Marsupialia: Macropodidae)) were examined within a patchy forestry environment in north‐west Tasmania. Population density of both species was relatively high. Selection indices from both population surveys and animal movement data showed that T. billardierii and M. rufogriseus had similar patterns of habitat selection at two spatio‐temporal scales; home range within the study area and habitats selected while foraging at night. Both species selected for young Eucalyptus nitens plantation with high weed‐cover within their home range. At night, T. billardierii and M. rufogriseus selected for open habitats (young plantation and grassland) and avoided closed habitats (native forest and 5–7 years old E. nitens plantation). There was no evidence for resource partitioning between species at these scales. In contrast, the two species differed in their selection for daytime sheltering habitat; T. billardierii selected native forest while M. rufogriseus selected older plantation. This may reflect differences in their predator avoidance strategies; that is, crypsis versus flight, rather than resource partitioning as a result of interspecific competition. The environment appears to be of high quality for both species, with patches of feeding and shelter habitats within close proximity of one another.  相似文献   

16.
Aim Given that urban landscapes often act as a point of entry for many non‐native species and urban development continues to increase as the human population rapidly expands, an understanding of the interaction between urbanization and non‐native plant species is important both in the control of potentially invasive species and in the conservation of native biodiversity. We investigated the spatial and temporal relationship between urban land cover and the distribution of non‐native species in Britain using two floristic data sets collected at two different time periods: 1987–88 and 2003–04. Location UK. Methods Using floristic data collected by the Botanical Society of the British Isles in 1987–88 (Monitoring Scheme) and 2003–04 (Local Change) in conjunction with habitat data obtained from the Land Cover Map of the UK, we conducted multiple regression analyses both within and between years on both groups of species (natives, neophytes and archaeophytes) and individual species. Results Neophytes (alien species introduced after 1500) were very strongly associated with urban land cover in both time periods and do not appear to be spreading out of urban habitats into the wider countryside. Archaeophytes (alien species introduced before 1500), however, showed a strong association with urban habitats in the earlier 1988 data set but no longer showed this association in the 2004 data set. Analysis at the individual species level showed that a large percentage of alien plant species, particularly archaeophytes, were not strongly associated with urban land cover or were negatively associated with such habitats. Main conclusions Our results suggest that there has been a reduction in the urban association of archaeophytes that is likely to have resulted from the recovery of archaeophytes associated with non‐urban (especially arable) habitats, following their decline in mid‐20th century, rather than from the movement of aliens into the wider countryside from urban habitats.  相似文献   

17.
Several studies have recently reported that common species are more important for species richness patterns than rare species. However, most such studies have been based on broad‐scale atlas data. We studied the contribution of different species occupancy, i.e. number of plots occupied, to species richness patterns emerging from species data in 50 by 50 m plots within six 140–200 ha forests in Norway. The study included vascular plants, lichens, bryophytes, and polypore fungi. We addressed the following questions: 1) are common species more correlated with species richness than rare species? 2) How do occupancy classes combine at various levels of species richness? 3) Which occupancy class is best in identifying the overall most species‐rich sites (hotspots) by sampling? The results showed that rare species were better correlated with species richness than common species when the information content was accounted for, that high species richness was associated with a higher proportion of less frequent species, and that the best occupancy class for local hotspot identification was species present in 10–30% of the plots within a forest. We argue that the observed correlations between overall richness and sub‐assembly richness are primarily structured by the combination of the distributions of species richness and species occupancy. Although these distributions result from general ecological processes, they may also be strongly affected by idiosyncratic elements of the individual datasets caused by the specific environmental composition of a study area. Hence, different datasets collected in different areas may lead to different results regarding the relative importance of common versus rare species, and such effects should be expected on both broad and fine spatial scales. Despite these effects, we suggest that infrequent species will tend to be more strongly correlated to species richness at local scales than at broader scales as a result of more right‐skewed species‐occupancy distributions.  相似文献   

18.
Aim Two main mechanisms may explain post‐disturbance species colonization patterns of early successional habitats such as those originated by wildfires. First, post‐disturbance colonization is not limited by the dispersal ability of the species to reach the newly created open areas and, secondly, colonization is limited by dispersal. Under the first hypothesis, we expect, at a regional scale, to find similar post‐disturbance communities to develop on recently burned sites. However, colonization limited by dispersal will lead to strong between‐site variations in species composition. Location To test these hypotheses, we studied the post‐fire colonization patterns of nine open‐habitat bird species in eight distantly located wildfires in the north‐eastern Iberian Peninsula. Methods We censused post‐fire bird composition by means of field transects and identified potential colonization sources from species–habitat suitability maps derived from atlas data. Results Our results showed strong significant differences in post‐fire species composition between burnt areas. Burnt areas located in areas with low probability of species presence before the fire event showed lower species occurrence and richness after the fire. Main conclusions These results do not support the idea that early successional stages and open habitats have a homogeneous community structure at regional scales and suggest that dispersal is a key constraint determining bird colonization of post‐fire habitats. Further attention should be paid to landscape heterogeneity as a key factor in determining population dynamics of open‐habitat species in the light of current and future land‐use changes in Mediterranean regions.  相似文献   

19.
Habitat relationships of forest birds on Tutuila Island, American Samoa   总被引:6,自引:0,他引:6  
Aim Our knowledge of landbirds on tropical Pacific islands is often comprised of brief, one-time surveys. We know little of species’ habitat preferences, and this information is critical for understanding the resource requirements or population status of native species and the impacts of human activity on island birds. Location Tutuila Island, American Samoa. Methods The spatial patterns in forest birds were investigated. This island harbours large tracts of native forest, a variety of disturbed and non-native forests, and some relatively healthy bird populations. The distribution of birds was correlated with forest types using habitat data collected at fifty-seven sites and avian census data collected monthly for 1–4 years at these sites. Results Differences in location and in vegetation structure and composition between native and non-native habitats are important influences on the distribution of birds on Tutuila. Among native species, for example, the purple-capped fruit-dove (Ptilinopus porphyraceus Temminck) is dependent upon native habitat, the Samoan starling (Aplonis atrifusca Peale) occurs in all habitats, and the cardinal honeyeater (Myzomela cardinalis Gmelin) is more abundant in low elevation, non-native habitat. Conclusions This research reinforces the importance of quantitative assessment of habitat relationships in the study and conservation of Pacific birds.  相似文献   

20.
Range maps of thousands of species, compiled and made freely available by the International Union for Conservation of Nature, are being increasingly applied to support spatial conservation planning. However, their coarse nature makes them prone to commission and omission errors, and they lack information on the variations in abundance within species’ distributions, calling into question their value to inform decisions at the fine scales at which conservation often takes place. Here, we tested if species ranges can reliably be used to estimate the responsibility of sites for the global conservation of species. We defined ‘specific responsibility’ as the fraction of a species’ population within a given site, considering it useful for prioritising species within sites; and defined ‘overall responsibility’ as the sum of specific responsibility across species within a site, assuming it informative of priorities among sites. Taking advantage of an exceptionally detailed dataset on the distribution and abundance of bird species at a near‐continental scale – a level of information rarely available to local decision‐makers – we created a benchmark against which we tested estimates of responsibility derived from range maps. We investigated approaches for improving these estimates by complementing range maps with plausibly available local data. We found that despite their coarse nature, range maps provided good estimates of sites’ overall responsibility, but relatively poor estimates of specific responsibility. Estimates were improved by combining range maps with local species lists or local abundance data, easily available through local surveys on the sites of interest, or simulated expert knowledge. Our results suggest that combining range maps with local data is a promising route for improving the effectiveness of local conservation decisions at contributing to reducing global biodiversity losses. This is all the more urgent in hyper‐diverse poorly‐known regions where conservation‐relevant decisions must proceed despite a paucity of biodiversity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号