首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diazotrophic cyanobacteria can take up combined nitrogen (nitrate, ammonium, amino acids, dissolved organic nitrogen) from solution, but the interaction between N2 fixation and uptake of combined nitrogen is not well understood. We studied the effects of combined nitrogen ) additions on N2 fixation rates in the cyanobacterium Trichodesmium erythraeum (IMS‐101) maintained in continuous culture in an N‐free medium (YBCII) and a 12:12‐h light:dark cycle. We measured acetylene reduction rates, nutrient concentrations, and biomass throughout the 12 h of illumination after the addition of nitrate (0.5–20 μM) at the start of the light period. Compared with unamended controls, Trichodesmium showed strong inhibition of acetylene reduction (up to 70%) in the presence of , with apparent saturation of the inhibition effect at an initial concentration of approximately 10 μM. The inhibition of acetylene reduction persisted through much of the light period as concentration in the culture vessel decreased. Recovery of N2 fixation was observed late in the light period in cultures amended with low concentrations of (<5 μM) when ambient concentrations had decreased to 0.3–0.4 μM in the culture vessel. Nitrate uptake accounted for as much as 86% of total N uptake and, at the higher treatment concentrations, more than made up for the observed decrease in N2 fixation rates. We conclude that Trichodesmium can obtain significant quantities of N through uptake of nitrate and does so in preference to N2 fixation when sufficient is available.  相似文献   

2.
The diazotrophic cyanobacteria Trichodesmium spp. contribute approximately half of the known marine dinitrogen (N2) fixation. Rapidly changing environmental factors such as the rising atmospheric partial pressure of carbon dioxide (pCO2) and shallower mixed layers (higher light intensities) are likely to affect N2‐fixation rates in the future ocean. Several studies have documented that N2 fixation in laboratory cultures of T. erythraeum increased when pCO2 was doubled from present‐day atmospheric concentrations (~380 ppm) to projected future levels (~750 ppm). We examined the interactive effects of light and pCO2 on two strains of T. erythraeum Ehrenb. (GBRTRLI101 and IMS101) in laboratory semicontinuous cultures. Elevated pCO2 stimulated gross N2‐fixation rates in cultures growing at 38 μmol quanta · m?2 · s?1 (GBRTRLI101 and IMS101) and 100 μmol quanta · m?2 · s?1 (IMS101), but this effect was reduced in both strains growing at 220 μmol quanta · m?2 · s?1. Conversely, CO2‐fixation rates increased significantly (P < 0.05) in response to high pCO2 under mid‐ and high irradiances only. These data imply that the stimulatory effect of elevated pCO2 on CO2 fixation and N2 fixation by T. erythraeum is correlated with light. The ratio of gross:net N2 fixation was also correlated with light and trichome length in IMS101. Our study suggests that elevated pCO2 may have a strong positive effect on Trichodesmium gross N2 fixation in intermediate and bottom layers of the euphotic zone, but perhaps not in light‐saturated surface layers. Climate change models must consider the interactive effects of multiple environmental variables on phytoplankton and the biogeochemical cycles they mediate.  相似文献   

3.
Cultures of Trichodesmium NIBB 1067 were grown in the synthetic medium AQUIL with a range of iron added from none to 5 × 10?7 M Fe for 15 days. Chlorophyll-a, cell counts, and total cell volume were two or three times higher in medium with 10?7 M Fe than with no added Fe. Oxygen production rate per chlorophyll-a was over 60% higher with higher iron. Increased iron stimulated photosynthesis at all irradiances from about 12–250 μE · m?2· s?1. Nitrogen fixation rate, estimated from acetylene reduction, for 10?7 and 10?8 M Fe cultures was approximately twice that of the cultures with no added Fe. The range of rates of O2 production and N2 fixation in cultures at the iron concentrations we used were similar to the rates from natural samples of Trichodesmium from both the Atlantic, and the Pacific oceans. This similarity may allow this clone to be used, with some caution, for future physiological ecology studies. This study demonstrates the importance of iron to photosynthesis and nitrogen fixation and suggests that Trichodesmium plays a central role in the biogeochemical cycles of iron, carbon and nitrogen.  相似文献   

4.
Iron availability may limit carbon and nitrogen fixation in the oceans. The freshwater cyanobacterium, Anabaena, was used as a laboratory model for the biochemical and physiological effects of iron. Increased iron nutrition, in the range of 10?8 M to 10?6 M resulted in increases of approximately four fold in carbon and nitrogen fixation rates. Chlorophyll concentration increased, and the relative amount of in vivo fluorescence was reduced with more iron. Natural samples of Trichodesmium, collected off Barbados and incubated with increased iron for two days, showed similar effects. Trichodesmium responded to iron additions indicating that it may be Fe limited in its natural environment. These responses to iron are consistent with the biochemical roles of iron in photosynthesis and nitrogen fixation. The results are discussed in the geochemical context of the sporadic total iron input to tropical oceans and possible implications to spatial and temporal patterns of productivity.  相似文献   

5.
Trichodesmium sp. IMS 101, originally isolated from coastal western Atlantic waters by Prufert-Bebout and colleagues and maintained in seawater-based media, was successfully cultivated in two artificial media. Its characteristics of growth, nitrogen fixation, and regulation of nitrogen fixation were compared to those of natural populations and Trichodesmium sp. NIBB 1067. Results indicate that the culture grown in artificial media had nitrogen fixation characteristics similar to those when the culture is grown in seawater-based medium and to those of Trichodesmium sp. in the natural habitat. The study provides practical artificial media to facilitate the physiological studies of these important diazotrophic cyanobacteria, as well as the cultivation of other Trichodesmium species in future studies. Manipulations of the light/dark cycle were performed to determine whether or not the daily cycle of nitrogen fixation is a circadian rhythm. Cultures grown under continuous light maintained the cycle for up to 6 days. We demonstrated that the daily cycle of nitrogen fixation in Trichodesmium sp. IMS 101 was at least partially under the control of a circardian rhythm.  相似文献   

6.
The effects of inorganic nutrient (ammonium [NH4 + ] and nitrate [NO3 ]) and amino acid (glutamate [glu] and glutamine [gln]) additions on rates of N2 fixation, N uptake, glutamine synthetase (GS) activity, and concentrations of intracellular pools of gln and glu were examined in natural and cultured populations of Trichodesmium. Additions of 1 μM glu, gln, NO3 , or NH4 + did not affect short-term rates of N2 fixation. This may be an important factor that allows for continued N2 fixation in oligotrophic areas where recycling processes are active. N2 fixation rates decreased when nutrients were supplied at higher concentrations (e.g. 10 μM). Uptake of combined N (NH4 + , NO3 , and amino acids) by Trichodesmium was stimulated by increased concentrations. For NO3 , proportional increases in NO3 uptake and decreases in N2 fixation were observed when additions were made to cultures before the onset of the light period. GS activity did not change much in response to the addition of NH4 + , NO3 , glu, or gln. GS is necessary for N metabolism, and the bulk of this enzyme pool may be conserved. Intracellular pools of glu and gln varied in response to 10 μM additions of NH4 + , glu, or gln. Cells incubated with NH4 + became depleted in intracellular glu and enriched with intracellular gln. The increase in the gln/glu ratio corresponded to a decrease in the rate of N2 fixation. Although the gln/glu ratio decreased in cells exposed to the amino acids, there was only a corresponding decrease in N2 fixation after the gln addition. The results presented here suggest that combined N concentrations on the order of 1 μM do not affect rates of N2 fixation and metabolism, although higher concentrations (e.g. 10 μM) can. Moreover, these effects are exerted through products of NH4 + assimilation rather than exogenous N, as has been suggested for other species. These results may help explain how cultures of Trichodesmium are able to simultaneously fix N2 and take up NH4 + and how natural populations continue to fix N2 once combined N concentrations increase within a bloom.  相似文献   

7.
Trichodesmium N2 fixation has been studied for decades in situ and, recently, in controlled laboratory conditions; yet N2‐fixation rate estimates still vary widely. This variance has made it difficult to accurately estimate the input of new nitrogen (N) by Trichodesmium to the oligotrophic gyres of the world ocean. Field and culture studies demonstrate that trace metal limitation, phosphate availability, the preferential uptake of combined N, light intensity, and temperature may all affect N2 fixation, but the interactions between growth rate and N2 fixation have not been well characterized in this marine diazotroph. To determine the effects of growth rate on N2 fixation, we established phosphorus (P)–limited continuous cultures of Trichodesmium, which we maintained at nine steady‐state growth rates ranging from 0.27 to 0.67 d?1. As growth rate increased, biomass (measured as particulate N) decreased, and N2‐fixation rate increased linearly. The carbon to nitrogen ratio (C:N) varied from 5.5 to 6.2, with a mean of 5.8 ± 0.2 (mean ± SD, N = 9), and decreased significantly with growth rate. The N:P ratio varied from 23.4 to 45.9, with a mean of 30.5 ± 6.6 (mean ± SD, N = 9), and remained relatively constant over the range of growth rates studied. Relative constancy of C:N:P ratios suggests a tight coupling between the uptake of these three macronutrients and steady‐state growth across the range of growth rates. Our work demonstrates that growth rate must be considered when planning studies of the effects of environmental factors on N2 fixation and when modeling the impact of Trichodesmium as a source of new N to oligotrophic regions of the ocean.  相似文献   

8.
We compared inorganic phosphate (Pi) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate‐limited cultures had up to six times higher maximum Pi uptake rates than P‐replete cultures in both strains. For strain GBRTRLI101, cell‐specific Pi uptake rates were nearly twice as high, due to larger cell size, but P‐specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 μM for Pi uptake and 0.1 and 0.2 μM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing Pi up to 1.0 μM. The C:P ratios were 340–390 and N:P ratios were 40–45 for both strains under severely P‐limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 μM Pi. The North Atlantic strain IMS101 is better adapted to growing on Pi at low concentrations than is GBRTRLI101 from the more Pi‐enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) Pi concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources.  相似文献   

9.
Physiological rate measurements were made with Oscillatoria thiebautii (Gom.) Geitler in the subtropical north Atlantic Ocean between Spain and Bermuda during May and June of 1975. The near surface C:N fixation ratios averaged 6.5, and the cellular composition ratio was 6.2, suggesting that N2 fixation is the major path of nitrogenous nutrition for this alga. Compared to other oceanic phytoplankters, it has a low affinity for orthophosphate at oceanic concentrations (ks= 9.0); however, it has a high potential for utilizing phosphomonoesters (170–300 ng atoms P ·μg chl a?1· h?1). Maximal photosynthesis occurred at 450–700 μ Einstein · m?2· s?1, and was inhibited by full sunlight. Calculated cell division rates (ca. 180 days) suggest that relative to other phytoplankters in this oceanic region, O. thiebautii must be subjected to negligible grazing pressure. No major differences in C, N, chl a or ATP were observed between the tuft (fusiform) and puff (spherical) colonies. ATP concentrations relative to other cellular constituents varied greatly between colonies, suggesting a general inter-colony physiological variability in the open Atlantic. With increasing depth in the euphotic zone, there was no evidence for chromatic adaption. The observations that O. thiebautii represents only a small fraction of total phytoplankton biomass and that its growth rate is 10–100 times slower than that of the other indigenous phytoplankton, strongly suggest that N2 fixation by this alga is a virtually insignificant component of the nitrogenous nutrition for the phytoplankton of the North Atlantic central gyre in late Spring.  相似文献   

10.
COBALT AND NITROGEN FIXATION IN LUPINUS ANGUSTIFOLIUS L.   总被引:1,自引:1,他引:0  
  相似文献   

11.
We measured uptake kinetics for four combined N sources, ambient rates of N uptake and N2 fixation, glutamine synthetase activity (transferase and biosynthetic), and concentrations of intracellular pools of glutamate (glu) and glutamine (gln) in cultures of Trichodesmium NIBB1067. N dynamics and metabolism were examined to assess the relative importance of N2 fixation and N uptake to Trichodesmium nutrition. Comparisons were made between cultures grown on medium without added N, with excess NO, or with excess urea. Of the combined N sources tested, Trichodesmium NIBB1067 had the highest affinity for NH; high uptake capacities for NH, urea, and glu; and little capacity for NO uptake. In cultures grown on medium without added N, NH accumulated in the medium during growth, resulting in high NH uptake rates relative to rates of N2 fixation. Glu uptake rates were low but consistent throughout the diel period. In cultures grown on excess NO or urea, uptake of these compounds supplied the majority of the daily N demand, although some N2 fixation occurred during the light period. NO uptake rates were reduced when N2-fixation rates were high. In all of the cultures, the highest gln/glu ratios and the lowest glutamine synthetase transferase/biosynthetic ratios were observed during the period when rates of total N uptake were highest. In cultures growing exponentially on medium without added N, N2 fixation accounted for 14%– 16% of the total daily N uptake. Uptake of NH and glu, presumably regenerated within the culture vessels, represented 84%–86% of the daily N uptake. Because these systems were closed, net growth was constrained by the rate at which N2 could be fixed into the system. However, total daily N turnover was greater than that necessary to accommodate the observed increase in culture biomass. The rapid N turnover rates observed in these cultures may support gross productivity and balance the high rates of C fixation observed in natural populations of Trichodesmium.  相似文献   

12.
Despite nearly two decades of intensive research, many questions regarding the physiology and ecology of the marine, non‐heterocystous cyanobacterium, Trichodesmium, remain unresolved. We note here the effect of EDTA (ethylenediaminetetraacetate) on N2 fixation by Trichodesmium, and the use of EDTA as a means of extending the viability of natural Trichodesmium spp. populations. We examined nitrogenase activity (NA) as a function of EDTA concentration, time of collection, light level, and iron addition. Samples collected early in the day and treated with EDTA maintain a steady rate of activity for hours longer than controls. Furthermore, samples preincubated through the night with EDTA were active the next morning, compared with controls that were inactive. The discovery that (10–50 μM) low concentrations of EDTA prolong the duration of NA of Trichodesmium during experimental manipulations without affecting the rate of acetylene reduction allows for longer term manipulative experiments to be conducted.  相似文献   

13.
The effect of simultaneous nitrogen fixation and phosphorus limitation on the physiological adaptation and growth performance of Aphanizomenon flos-aquae (L.) Ralfs PCC 7905 was studied in continuous culture. In the absence of ammonia, N2 fixation occurred and the maximum growth rate (as determined in diluted batch cultures) was lower. However, no distinction could be made between the steady-state N uptake rates (based on cellular N contents) of N2-fixing cells and cells grown with ammonia. At the higher dilution rates, the residual P concentration increased with increasing dilution rate, more so under N2-fixing conditions, compared to the cultures grown in the presence of ammonia. More generally, the yield of biomass per consumed P, as the biomass concentration itself, decreased with increasing dilution rate, and both were lower under N2-fixing conditions. The restricted biomass production under N2-fixing conditions suggests that reduction of N loading may benefit lake restoration projects. The influence of N2-fixation on the severity of P limitation is discussed in terms of metabolic control analysis. From the increase of the residual P concentration on switching from ammonium to N2-fixing conditions, it is deduced that under N2-fixing and P-limited conditions, control of growth is shared by N and P metabolism.  相似文献   

14.
The filamentous nitrogen-fixing cyanobacterium Aphanizomenon flos-aquae (L.) Ralfs forms bundle or fake shaped aggregates which can provide buoyancy control, protection against intense illumination, enhancement of phycosphere nutrient regeneration, and which may result from size-selective herbivory by zooplankton. The dimensions of aggregates can change quickly. In this study, after a period of darkness, illumination caused aggregates to elongate approximately five-fold over a 10-15 min period. The metamorphosis was reversible upon cessation of illumination and through successive light-dark cycles. Manipulations of environmental oxygen concentration and photosystem Ü activity (via DCMU amendment), together with measurements made inside flakes with O2-sensitive microelectrocles, showed that the metamorphosis was a response to oxygen concentration and operated to enhance diffusive efflux of photosynthetically produced oxygen during illumination. During darkness oxygen concentration within contracted aggregates became severely depleted relative to the environment. We propose that metamorphic minimization of local oxygen concentration is an adaptation that enhances the ability of Aphanizomenon flos-aquae to fix atmospheric nitrogen via the oxygen-labile nitrogenase enzyme system.  相似文献   

15.
Alkaline phosphatase activities of the diazotrophic marine cyanobacterium Trichodesmium were studied among natural populations in the northern Red Sea and in laboratory cultures of Trichodesmium sp. strain WH9601. Open-water tuft-shaped colonies of Trichodesmium showed high alkaline phosphatase activities with 2.4–11.7 μmol p-nitrophenylphosphate (PNPP) hydrolyzed·μg chl a 1·h 1, irrespective of date or origin of the sample. Coastal populations of the Trichodesmium tuft colonies had low alkaline phosphatase activities with 0.2–0.5 μmol PNPP·μg chl a 1·h 1. An exception was the Trichodesmium fall maximum, when both tuft colonies and the plankton community (<100 μm) had alkaline phosphatase activities of 0.6–7.4 μmol PNPP·μg chl a 1·h 1. Likewise, the more rare puff and bow-tie colonies of Trichodesmium spp. in coastal waters had elevated alkaline phosphatase activities (0.8–1.6 μmol PNPP·μg chl a 1·h 1) as compared with tuft colonies coinhabiting the same waters. Intact filaments of tuft-forming Trichodesmium sp. strain WH9601 from phosphate-replete cultures had a base alkaline phosphatase activity of 0.5 μmol PNPP·μg chl a 1·h 1. This activity underwent a 10-fold increase in phosphate-deplete cultures and in cultures supplied with glycerophosphate as the sole P source. The elevated level of alkaline phosphatase activity was sustained in P-deplete cultures, but it declined in cultures with glycerophosphate. The decline is suggested to result from feedback repression of alkaline phosphatase synthesis by the phosphate generated in the glycerophosphate hydrolysis. The enhanced alkaline phosphatase activities of Trichodesmium spp. populations provide evidence that P stress is an important factor in the ecology of Trichodesmium in the northern Red Sea.  相似文献   

16.
蓝藻Anabaena 7120经用Ar+CO_2、空气和Ar处理后,固氮活性有明显不同。Ar+CO_2处理的活性比空气处理的高出数倍,而Ar处理的则比空气中的低很多。以上三种处理的Anabaena 7120固氮对不同生理条件反应不一样,固氮活性高者对CO和O_2的敏感程度小些、受到CO_2和N_2的抑制程度也轻。但是分子氢对三者固氮作用的支持效用相同,并且也是和氢酶活动有联系。弱光下固氮活力低的蓝藻固氮活性下降得更大些。光合抑制剂和结合态氮对固氮活力高的蓝藻固氮活性的抑制显著比固氮活力低者小。三者的放氢和放氧能力也不同,固氮活力高者放氧高而放氢量小些,低固氮活力的蓝藻正好相反。  相似文献   

17.
Trichodesmium tenue Wille (1904) was examined using transmission electron microscopy to determine the role of carbohydrate, phosphorus, and nitrogen storage in buoyancy regulation. Carbohydrate storage area (mean = 2.06 ± 0.61 [SE] μm2; 6.62% of total cell area) in negatively buoyant colonies (NBCs) was significantly higher (P < 0.001) than in positively buoyant colonies (PBCs) (mean = 0.38 ± 0.06 μm2; 0.73%). Distinct diel periodicity of carbohydrate content was found in NBCs demonstrated by an increase from darkness to afternoon. Polyphosphate content was significantly higher (P < 0.001) in NBCs, with a mean of 0.44± 0.10 μm2 (1.54%), as compared to PBCs, with a mean of 0.14 ± 0.05 μm2 (0.24%). Polyphosphate content increased in NBCs from morning to evening, and PBCs had a 10% decrease from morning to afternoon. Calculations indicated that averaged effects of polyphosphate on increased cell density is approximately 20% of that from carbohydrate accumulation. Density contribution due to ballast weight of carbohydrate and polyphosphate indicated that NBCs were 12 times more dense than PBCs. Mean area of cyanophycin granules (N storage) was not significantly different between PBCs and NBCs. In conclusion, Trichodesmium tenue can regulate buoyancy by carbohydrate ballasting similar to that noted in limnetic cyanobacteria. Polyphosphate storage and possibly nitrogen storage products play a significant role in buoyancy regulation.  相似文献   

18.
本文叙述一种从多变鱼腥藻(Anabaena variabilis)中分离异形胞的简易方法。这种新方法是用毛地黄皂苷和甘露醇的 TES 缓冲液处理藻丝,破碎营养细胞,并结合分级离心的方法获得异形胞。所分离异形胞的纯度,在显微镜下观察达到90%左右。当提供 ATP 和Na_2S_2O_4时,能够测到所分离异形胞的固氮活性,其最大速率是5.31毫微克分子 C_2H_2/10~6异形胞/小时,为整体藻丝活性的10%。这种比活性,在4小时内,甚至更长的时间内,保持不变。但是,在氢气下和照光条件下,分离的异形胞缺乏受光促进的固氮活性。分离的异形胞在77°K下波长为430nm 光激发的荧光光谱和完整藻丝的相比,它缺乏属于光合系统Ⅱ的685nm 和695nm 的荧光发射峰,而仅具有光合系统 I 的730nm 荧光发射峰。当提供 DCIP 和抗坏血酸时,被压碎的异形胞能够光还原甲基紫精,其活性为360消耗 O_2的微克分子/毫克叶绿素/小时。上述结果表明用毛地黄皂苷法分离的异形胞具有较完整的 DCIPH_2→MV 的 PSI 活性。  相似文献   

19.
Estimates of the iron use efficiency (IUE) for diazotrophic plant growth have been used to suggest iron limitation of marine N2 fixation. However, in the course of these inferences, neither the physiological complexity of these estimates nor the specific physiological parameters of marine diazotrophs were evaluated. Here, a semiempirical prediction of the IUE of diazotrophic growth for Trichodesmium was computed from considerations of the Fe content and reaction rates of the nitrogenase complex and PSI:PSII ratios, as well as field measurements of Mehler activity, cellular Fe‐superoxide dismutase activity, and diel variability in C and N2 fixation. With a PSI:PSII ratio of 1 and 48% Mehler activity, the instantaneous IUE (0.33 mol C fixed·mol cellular Fe ? 1 1 Received 16 August 2001. Accepted 7 October 2002. ·s ? 1 1 Received 16 August 2001. Accepted 7 October 2002. ) was only 4‐fold lower than that calculated for a phytoplankter growing on reduced N. We computed a range of daily integrated IUE values from 2900 to 7700 mol C·mol Fe ? 1 1 Received 16 August 2001. Accepted 7 October 2002. ·d ? 1 1 Received 16 August 2001. Accepted 7 October 2002. , accounting for the diel variability in C and N2 fixation as well as the uncertainties in cyanobacterial nitrogenase biochemistry and PSI:II ratios of field‐collected Trichodesmium. The lowest observed Fe‐superoxide dismutase:C quota of 2.9 (μmol:mol) suggests a maintenance requirement for this enzyme. The maintenance Fe:C requirement of 13.5 μmol:mol (derived from cultures of Trichodesmium IMS 101) and values of the IUE yielded an Fe requirement ranging from 27 to 48 Fe:C (μmol:mol) to achieve a diazotrophic growth rate of 0.1 d ? 1 1 Received 16 August 2001. Accepted 7 October 2002. . Based on these predicted requirements, the Fe:C contents of Caribbean Sea and most North Atlantic Ocean populations sampled thus far exceed that required to support the observed rates of N2 fixation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号