首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present‐day and possible future global distribution has never been predicted. Using 30 years (1980–2010) of whale shark observations recorded by tuna purse‐seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear mixed‐effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface temperature, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo‐absences within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias. We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no climate‐policy reference scenario, and used these to predict changes in distribution. The full model (excluding standard deviation of sea surface temperature) had the highest relative statistical support (wAICc = 0.99) and explained ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca. 5°N and 3–8°S, respectively) accompanied by an overall range contraction (2.5–7.4% and 1.1–6.3%, respectively). Predicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species.  相似文献   

2.
The whale shark is an endangered species that usually feeds in coastal areas of highly productive seas such as the Gulf of California, Mexico. This study aims to describe the effect of sea surface temperature, chlorophyll a, bathymetry and slope on the habitat suitability of whale sharks in three important aggregation sites of the Gulf of California. A total of 2396 records of occurrence of whale sharks were obtained from international databases and scientific literature between 1996 and 2018. These records were used for the creation of a species distribution model using MaxEnt for each of the three aggregation sites. The concentration of chlorophyll a explained 71% of the habitat suitability, followed by bathymetry and slope with a combined 17%, and sea surface temperature constituting 10% of the model. Habitat suitability was related to areas where nontargeted fisheries may impact whale sharks through bycatch, entanglement and ship strikes. The implications for the conservation of whale sharks should be considered for management decisions in terms of marine protected areas, fishing refugees or bans, and other regulations regarding fisheries activities.  相似文献   

3.
The whale shark (Rhincodon typus) is an endangered marine fish species which can be adversely affected by the fishing activities of the industrial purse seine fleet targeting tropical tuna. Tuna tend to aggregate around all types of floating objects, including whale sharks. We analyzed and modeled the spatial distribution and environmental preferences of whale sharks based on the presence and absence data from fishing observations in the Atlantic Ocean. We used a thorough multialgorithm analysis, based on a new presence–absence dataset, and endeavored to follow the most recent recommendations on best practices in species distribution modeling. First, we selected a subset of relevant variables using a generalized linear model that addressed multicollinearity, statistical errors, and information criteria. We then used the selected variables to build a model ensemble including 19 different algorithms. After eliminating models with insufficient performance, we assessed the potential distribution of whale sharks using the mean of the predictions of the selected models. We also assessed the variance among the predictions of different algorithms, in order to identify areas with the highest model consensus. The results show that several coastal regions and warm shallow currents, such as the Gulf Stream and the Canary and Benguela currents, are the most suitable areas for whale sharks under current environmental conditions. Future environmental projections for the Atlantic Ocean suggest that some of the suitable regions will shift northward, but current concentration areas will continue to be suitable for whale shark, although with less productivity, which could have negative consequences for conservation of the species. We discuss the implications of these predictions for the conservation and management of this charismatic marine species.  相似文献   

4.
Seven whale sharks were tracked using satellite-linked tags from Ningaloo Reef, off northern Western Australia, following tagging in April and June 2002 and April-May 2005. We investigated how the movements of those whale shark tracks were influenced by geostrophic surface currents during sequential one-week periods by using a passive diffusion model parameterised with observed starting locations of the sharks and weekly maps of surface current velocity and direction (derived from altimetry). We compared the outputs from the passive diffusion model and maps of chlorophyll-a concentration (SeaWiFs/MODIS) and with the actual tracks of the sharks using GIS and generalized linear mixed-effects models (GLMM). The GLMM indicated very little support for passive diffusion with sea-surface ocean currents influencing whale shark distributions in the north eastern Indian Ocean. Moreover, the sharks' movements correlated only weakly with the spatial distribution of sea-surface chlorophyll-a concentrations. The seven whale sharks had average swimming speeds comparable with those recorded in other satellite tracking studies of this species. Swimming speeds of the seven sharks were similar to those reported in previous studies and up to three times greater than the maximum sea-surface current velocities that the sharks encountered while traversing into lower southerly latitudes (moving northward towards the equator). Our results indicate that whale sharks departing from Ningaloo travel actively and independently of near-surface currents where they spend most of their time despite additional metabolic costs of this behaviour.  相似文献   

5.
The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region.  相似文献   

6.
Whale sharks, Rhincodon typus, seasonally aggregate in coastal waters off Ningaloo Reef, Western Australia. We review the oceanographic setting of the region and present evidence that such aggregations form as a result of migratory behavior associated with climatic and oceanographic processes. We utilise records of whale shark abundance collected at Ningaloo Reef from dedicated searches by boat and aircraft and from log sheets recorded by the tourism industry. Measures of whale shark abundance derived from log sheet data sets were moderately correlated with the Southern Oscillation Index and weakly correlated with coastal sea level, an index of the strength of the Leeuwin Current, and sea surface temperature over the period 1993 to 1998. Abundances of whale sharks derived from boat searches from 1983 to 1992 were also correlated with fluctuations in the Southern Oscillation Index, except during a three year period from 1988 to 1990. We conclude that, at least in some years, there appears to be a link between the abundance of aggregating whale sharks and the physical and biological oceanography of the region, with greater whale shark numbers in La Niña years. The lack of correlation in other years may be due to a combination of uneven quality of data and/or aggregations occurring in response to a complex interaction between the physical and biological oceanography of the region.  相似文献   

7.
Seasonal observations of whale shark abundance recorded by ecotourist operators at Ningaloo Reef, Western Australia from 1999 to 2004 were compared with weekly regional and global oceanographic and atmospheric variables, including average sea surface temperatures, along-shelf wind shear, sea level and the Southern Oscillation Index (SOI). Estimates of these physical variables were derived from either ground-based data or from remote sensing instruments. A generalised linear mixed-effects modelling (GLMM) approach with random sampling and model simulation was used to determine the relationships between the number of whale sharks and all model variants of the environmental parameters, using information-theoretic weights of evidence to rank models. SOI and wind shear had the most support for explaining the deviance in weekly whale shark abundance at Ningaloo Reef during a season. The SOI and wind shear variables positively influenced whale shark abundance such that more sharks were sighted when the Southern Oscillation was stronger and along-shelf winds were increasingly prevalent. This may reflect changes in the strength of oceanographic processes such as the Leeuwin Current (in response to the Southern Oscillation) and wind/current driven upwelling which may affect the abundance of whale sharks transported to the region and/or the availability of their prey by driving productivity changes.  相似文献   

8.
Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature‐driven decline in habitat suitability for many of the most significant and bio‐diverse tropical coral regions, particularly in the central Indo‐Pacific. This is accompanied by a temperature‐driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short‐term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate.  相似文献   

9.
Although southern sea otters (Enhydra lutris nereis) are not considered prey for white sharks (Carcharodon carcharias), sharks do nonetheless bite sea otters. We analyzed spatial and temporal trends in shark bites on sea otters in California, assessing the frequency of shark bite wounds in 1,870 carcasses collected since 1985. The proportion of stranded sea otters having shark bites has increased sharply since 2003, and white shark bites now account for >50% of recovered carcasses. The trend was most pronounced in the southern part of the range, from Estero Bay to Point Conception, where shark bite frequency has increased eightfold. Seasonal trends were also evident: most shark‐bitten carcasses are recovered in late summer and fall; however, the period of elevated shark bite frequency has lengthened. The causes of these trends are unclear, but possible contributing factors include increased white shark abundance and/or changes in white shark behavior and distribution. In particular, the spatiotemporal patterns of shark‐bitten sea otters match increases in pinniped populations, and the increased availability of marine mammal prey for white sharks may have led to more sharks spending more time in nearshore waters utilized by both sea otters and pinnipeds.  相似文献   

10.
中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性   总被引:5,自引:0,他引:5  
杨晓明  戴小杰  田思泉  朱国平 《生态学报》2014,34(13):3771-3778
中西太平洋是世界鲣鱼围网主要作业水域。基于我国渔船2005—2009年的中西太平洋鲣鱼围网生产数据,运用空间统计方法对该水域鲣鱼资源的空间自相关性和空间异质性特征进行分析,并结合海洋环境特征分析资源分布的热点区域。(1)通过常规统计学计算获得鲣鱼资源的偏态Sk、峰态数Ku、变异值Cv、s2/m和全局空间自相关Geary c系数,发现中西太平洋鲣鱼资源总体上是以低密度区域为主,高密度区域较少;鱼类资源密度值差异较大,资源表现出强烈集聚分布,总体的空间自相关性中等偏弱。(2)通过局部空间自相关的热点分析方法计算,发现局部空间自相关性较强,存在多个在统计学上通过显著性检验的资源热点和冷点。(3)通过地统计方法研究鲣鱼资源的空间变异性特征和方向变异时,空间自相关类型上最优模型是球形模型,鲣鱼资源密度各向同性,最大相关距离1000km左右。发现空间自相关引起的差异占整个差异的50%左右,为中等强度变异;在方向性变异上,主要体现在南北向上,其该向上结构性误差占67%,而东西向结构性误差占49%。这一结果和海洋环境的南北向上结构性远好于东西向结构性有关;从各方向的分维数看,数值介于1.876—1.9之间,数值较大,空间自相关较弱。(4)以资源热点区域作为区域性渔场,结合海洋温度和叶绿素场海洋环境特征,将中西太平洋鲣鱼资源分为3个不同的局部渔场,即2个暖池渔场,1个冷舌渔场。冷舌渔场由中东太平洋赤道上升流引起,在锋面地带提供了较为丰富的初级生产力,便于鱼类获得丰富的食物;暖池渔场靠近岛屿和陆地区域,近岸上升流系统提供了丰富的初级生产力。(5)将热点分析和渔场重心方法及栖息地指数的优缺点做了对比,建议以后采用空间残差模型深入研究空间自相关问题。  相似文献   

11.
Whale sharks, Rhincodon typus, are often perceived as solitary behemoths that live and feed in the open ocean. To the contrary, evidence is accumulating that they are gregarious and form seasonal aggregations in some coastal waters. One such aggregation occurs annually north of Cabo Catoche, off Isla Holbox on the Yucatán Peninsula of Mexico. Here we report a second, much denser aggregation of whale sharks (dubbed "the Afuera") that occurs east of the tip of the Yucatán Peninsula in the Caribbean Sea. The 2009 Afuera event comprised the largest aggregation of whale sharks ever reported, with up to 420 whale sharks observed in a single aerial survey, all gathered in an elliptical patch of ocean approximately 18 km(2). Plankton studies indicated that the sharks were feeding on dense homogenous patches of fish eggs, which DNA barcoding analysis identified as belonging to little tunny, Euthynnus alletteratus. This contrasts with the annual Cabo Catoche aggregation nearby, where prey consists mostly of copepods and sergestid shrimp. Increased sightings at the Afuera coincide with decreased sightings at Cabo Catoche, and both groups have the same sex ratio, implying that the same animals are likely involved in both aggregations; tagging data support this idea. With two whale shark aggregation areas, high coastal productivity and a previously-unknown scombrid spawning ground, the northeastern Yucatán marine region is a critical habitat that deserves more concerted conservation efforts.  相似文献   

12.
Studies have shown that the whale shark (Rhincodon typus), a vulnerable large filter feeder, seasonally aggregates at highly productive coastal sites and that individuals can perform large, trans-boundary migrations to reach these locations. Yet, the whereabouts of the whale shark when absent from these sites and the potential oceanographic and biological drivers involved in shaping their present and future habitat use, including that located at the fringes of their suitable oceanic habitat, are largely unknown. We analysed a 16-year (1998–2013) observer dataset from the pole-and-line tuna fishery across the Azores (mid-North Atlantic) and used GAM models to investigate the spatial and temporal patterns of whale shark occurrence in relation to oceanographic features. Across this period, the whale shark became a regular summer visitor to the archipelago after a sharp increase in sighting frequency seen in 2008. We found that SST helps predicting their occurrence in the region associated to the position of the seasonal 22°C isotherm, showing that the Azores are at a thermal boundary for this species and providing an explanation for the post 2007 increase. Within the region, whale shark detections were also higher in areas of increased bathymetric slope and closer to the seamounts, coinciding with higher chl-a biomass, a behaviour most probably associated to increased feeding opportunities. They also showed a tendency to be clustered around the southernmost island of Santa Maria. This study shows that the region integrates the oceanic habitat of adult whale shark and suggests that an increase in its relative importance for the Atlantic population might be expected in face of climate change.  相似文献   

13.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   

14.
Spatial separation within predator communities can arise via territoriality but also from competitive interactions among and within species. However, linking competitive interactions to predator distribution patterns is difficult and theoretical models predict different habitat selection patterns dependent on habitat quality and how competition manifests itself. While models generally consider competitors to be either equal in ability, or for one phenotype to have a fixed advantage over the other, few studies consider that an animal may only have a competitive advantage in specific habitats. We used  10 years of telemetry data, habitat surveys and behavioral experiments, to show spatial partitioning between and within two species of reef shark (grey reef Carcharhinus amblyrhinchos and blacktip reef sharks C. melanopterus) at an unfished Pacific atoll. Within a species, sharks remained within small ‘sub‐habitats’ with very few movements of individuals between sub‐habitats, which previous models have suggested could be caused by intra‐specific competition. Blacktip reef sharks were more broadly distributed across habitat types but a greater proportion used lagoon and backreef habitats, while grey reef sharks preferred forereef habitats. Grey reef sharks at a nearby atoll where blacktip reef sharks are absent, were distributed more broadly between habitat types than when both species were present. A series of individual‐based models predict that habitat separation would only arise if there are competitive interactions between species that are habitat‐specific, with grey reefs having a competitive advantage on the forereefs and blacktips in the lagoons and backreef. We provide compelling evidence that competition helps drive distribution patterns and spatial separation of a marine predator community, and highlight that competitive advantages may not be constant but rather dependent on habitats.  相似文献   

15.
This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo‐Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea‐level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial‐scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo‐Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales.  相似文献   

16.
Despite being a large, relatively abundant predator, the distribution and seasonal occurrence of the broadnose sevengill shark, Notorynchus cepedianus, in New Zealand is poorly understood. During 71 sampling trips conducted from July 2013 to May 2015, sharks were attracted to coastal sampling sites in southern New Zealand at ōtākou/Otago Harbour and Te Whaka ā Te Wera/Paterson Inlet, Stewart Island, using chum. Using a logistic regression model, water temperature was identified as a key predictor of encountering sevengill sharks. In addition, location, cloud cover and sea state were also identified as influential predictors. At ōtākou, a clear seasonal pattern of sevengill shark sightings emerged. Sharks were detected on 86% of survey trips in summer, whilst no sharks were detected in winter or spring. At Te Whaka ā Te Wera, sharks were sighted throughout all seasons, but a decline in shark encounters occurred during winter. This study represents the first systematic data on seasonal habitat use by sevengill sharks in New Zealand.  相似文献   

17.
Complex interactions between protected populations may challenge the recovery of whole ecosystems. In California, white sharks (Carcharodon carcharias) mistargeting southern sea otters (Enhydra lutris nereis) are an emergent impact to sea otter recovery, inhibiting the broader ecosystem restoration sea otters might provide. Here, we integrate and analyze tracking and stranding data to compare the phenology of interactions between white sharks and their targeted prey (elephant seals, Mirounga angustirostris) with those of mistargeted prey (sea otters, humans). Pronounced seasonal peaks in shark bites to otters and humans overlap in the late boreal summer, immediately before the annual adult white shark migration to elephant seal rookeries. From 1997 to 2017, the seasonal period when sharks bite otters expanded from 2 to 8 months of the year and occurred primarily in regions where kelp cover declined. Immature and male otters, demographics most associated with range expansion, were disproportionately impacted. While sea otters are understood to play a keystone role in kelp forests, recent ecosystem shifts are revealing unprecedented bottom‐up and top‐down interactions. Such shifts challenge ecosystem management programs that rely on static models of species interactions.  相似文献   

18.
Whale sharks Rhincodon typus were monitored via acoustic transmitters at the northern end of Western Australia's Ningaloo Marine Park to establish the extent to which the species inhabits the region beyond the whale‐shark ecotourism industry season, which usually extends from March to August in each year. Despite the vast majority (c. 98%) of photographic submissions of R. typus from Ningaloo Reef being between March and August, acoustic detections from the tagged R. typus at Ningaloo were recorded in all months of the year, but do not preclude the occurrence of extended absences. It is concluded that as a species, R. typus occurs year round at Ningaloo, where it generally remains in close proximity to the reef edge, but that some individuals move outside of the detection range of the array for extended periods.  相似文献   

19.
Climate variation is an important factor shaping the demographic histories of many marine species, though impacts likely differ depending on species life history, habitat preferences and ecology. Investigating how species responded to historic climate fluctuations may provide critical insights into a species’ response to current climate change. Despite their ecological diversity, shark species share many similar life history characteristics and may be especially vulnerable to anthropogenic and climate impacts. We compared patterns of genetic variability, mismatch distributions and demographic reconstructions from coalescence approaches among temperate and tropical shark species with differing ecological characteristics, to investigate the effect of the past glaciation cycles on population abundance. Genetic diversity at two mitochondrial DNA regions (ND2 and control region) was assayed in four North Pacific species, Pacific spiny dogfish, Pacific sleeper sharks, salmon shark, and bluntnose sixgill shark. In addition, control region sequences acquired from GenBank for five shark species [tope shark (California/Australia), white shark (California), blacktip shark (eastern and western Gulf of Mexico), lemon shark (Bahamas), and whale shark] were analyzed. General patterns in genetic diversity, mismatch analyses and Bayesian skyline plots supported our hypothesis that species biology affected the impact of climate variation on demographic history. Consequently, our results suggest that effects of contemporary climate change on sharks may be to some degree predictable from species biology, distribution, habitat and the impact of past climate events.  相似文献   

20.
拟锥齿鲨是热带大西洋金枪鱼延绳钓渔业中重要的兼捕物种,对其单位捕捞努力量渔获量(CPUE)与环境关系的研究可为该鱼种的资源保护和管理提供基础资料.根据我国金枪鱼渔业国家观察员2009—2015年在热带大西洋海域(6.38° S—14.92° N,42.03°—18.53° W)调查时采集的1085尾拟锥齿鲨数据及Tweedie类分布理论和特点,建立了GAM-Tweedie模型,对其CPUE的时间变化、空间分布及与环境因子的关系进行了分析.结果表明: 时空因子(年、月、经度、纬度)和环境因子对拟锥齿鲨名义CPUE的总偏差解释为40.2%,其中时空因子对其的影响均显著,环境因子中,海表面高度、叶绿素a浓度、作业时天气、海表面盐度、海表面气压对其影响显著,而海况、农历对其影响不显著;不同纬度和不同月份下海平面温度与拟锥齿鲨CPUE呈显著相关.2009—2015年拟锥齿鲨标准化CPUE呈现波动,整体呈上升趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号