共查询到20条相似文献,搜索用时 15 毫秒
1.
Niyogi KK Shih C Soon Chow W Pogson BJ Dellapenna D Björkman O 《Photosynthesis research》2001,67(1-2):139-145
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific xanthophyll pigments in NPQ, we have analyzed mutants affecting xanthophyll metabolism in Arabidopsis thaliana. An npq1 lut2 double mutant was constructed, which lacks both zeaxanthin and lutein due to defects in the violaxanthin de-epoxidase and lycopene -cyclase genes. The npq1 lut2 strain had normal Photosystem II efficiency and nearly wild-type concentrations of functional Photosystem II reaction centers, but the rapidly reversible component of NPQ was completely inhibited. Despite the defects in xanthophyll composition and NPQ, the npq1 lut2 mutant exhibited a remarkable ability to tolerate high light.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
2.
Gemma Kulk Anita G. J. Buma Ronald J. W. Visser Gert L. Van Dijken Matthew M. Mills Kevin R. Arrigo 《Journal of phycology》2012,48(1):45-59
The effects of iron limitation on photoacclimation to dynamic irradiance were studied in Phaeocystis antarctica G. Karst. and Fragilariopsis cylindrus (Grunow) W. Krieg. in terms of growth rate, photosynthetic parameters, pigment composition, and fluorescence characteristics. Under dynamic light conditions mimicking vertical mixing below the euphotic zone, P. antarctica displayed higher growth rates than F. cylindrus both under iron (Fe)–replete and Fe‐limiting conditions. Both species showed xanthophyll de‐epoxidation that was accompanied by low levels of nonphotochemical quenching (NPQ) during the irradiance maximum of the light cycle. The potential for NPQ at light levels corresponding to full sunlight was substantial in both species and increased under Fe limitation in F. cylindrus. Although the decline in Fv/Fm under Fe limitation was similar in both species, the accompanying decrease in the maximum rate of photosynthesis and growth rate was much stronger in F. cylindrus. Analysis of the electron transport rates through PSII and on to carbon (C) fixation revealed a large potential for photoprotective cyclic electron transport (CET) in F. cylindrus, particularly under Fe limitation. Probably, CET aided the photoprotection in F. cylindrus, but it also reduced photosynthetic efficiency at higher light intensities. P. antarctica, on the other hand, was able to efficiently use electrons flowing through PSII for C fixation at all light levels, particularly under Fe limitation. Thus, Fe limitation enhanced the photophysiological differences between P. antarctica and diatoms, supporting field observations where P. antarctica is found to dominate deeply mixed water columns, whereas diatoms dominate shallower mixed layers. 相似文献
3.
GENERAL FEATURES OF PHOTOPROTECTION BY ENERGY DISSIPATION IN PLANKTONIC DIATOMS (BACILLARIOPHYCEAE)1
Planktonic diatoms (Bacillariophyceae) have to cope with large fluctuations of light intensity and periodic exposure to high light. After a shift to high light, photoprotective dissipation of excess energy characterized by the nonphotochemical quenching of fluorescence (NPQ) and the concomitant deepoxidation of diadinoxanthin to diatoxanthin (DT) were measured in four different planktonic marine diatoms (Bacillariophyceae): Skeletonema costatum (Greville) Cleve, Cylindrotheca fusiformis Reimann et Lewin, Thalassiosira weissflogii (Grunow) Fryxell et Hasle, and Ditylum brightwellii (West) Grunow in comparison to the model organism Phaeodactylum tricornutum Böhlin. Upon a sudden increase of light intensity, deepoxidation was rapid and de novo synthesis of DT also occurred. In all species, NPQ was linearly related to the amount of DT formed during high light. In this report, we focused on the role of DT in the dissipation of energy that takes place in the light‐harvesting complex. In S. costatum for the same amount of DT, less NPQ was formed than in P. tricornutum and as a consequence the photoprotection of PSII was less efficient. The general features of photoprotection by harmless dissipation of excess energy in planktonic diatoms described here partly explain why diatoms are well adapted to light intensity fluctuations. 相似文献
4.
5.
Here the mechanisms involved in excitation energy dissipation of Macrocystis pyrifera were characterized to explain the high nonphotochemical quenching of chlorophyll a (Chla) fluorescence (NPQ) capacity of this alga. We performed a comparative analysis of NPQ and xanthophyll cycle (XC) activity in blades collected at different depths. The responses of the blades to dithiothreitol (DTT) and to the uncoupler NH4Cl were also assayed. The degree of NPQ induction was related to the amount of zeaxanthin synthesized in high light. The inhibition of zeaxanthin synthesis with DTT blocked NPQ induction. A slow NPQ relaxation upon the addition of NH4Cl, which disrupts the transthylakoid proton gradient, was detected. The slow NPQ relaxation took place only in the presence of de-epoxidated XC pigments and was related to the epoxidation of zeaxanthin. These results indicate that in M. pyrifera, in contrast to higher plants, the transthylakoid proton gradient alone does not induce NPQ. The role of this gradient seems to be related only to the activation of the violaxanthin de-epoxidase enzyme. 相似文献
6.
Peterson RB 《Photosynthesis research》2005,85(2):205-219
Application of multiple probes to systems that carry specific mutations provides a powerful means for studying how known regulators of light utilization interact in vivo. Two lines of Arabidopsis thaliana were studied, each carrying a unique lesion in the nuclear psbS gene encoding a 22-kDa pigment-binding protein (PS II-S) essential for full expression of photoprotective, rapid-phase, nonphotochemical quenching of chlorophyll fluorescence (NPQ). The PS II-S protein is absent in line npq4-1 due to deletion of psbS. Line npq4-9 expresses normal levels of PS II-S but carries a single amino acid substitution that lowers NPQ capacity by about 50%. A prior report [Peterson RB and Havir EA (2001) Planta 214: 142–152] described an altered pattern of redox states of the acceptor side of Photosystem II (PS II) and donor side of Photosystem I (PS I) for npq4-9 suggesting that interphotosystem electron transport may be restricted by a higher transthylakoid ΔpH in this line. In vivo steady state fluorescence and absorbance measurements (820 nm) confirmed these earlier observations for line npq4-9 but not for npq4-1. Thus, the prior results cannot be correlated simply to a loss of NPQ capacity. Likewise, the kinetics of the 820-nm absorbance change did not indicate a substantial effect of psbS genotype on electron flow from plastoquinol to PS I. A simple model is proposed to relate linear electron transport rate (measured gasometrically) to a parameter (based on fluorescence) that provides a relative measure of the density of excitation available for photochemistry in PS II. Surprisingly, analyses using this model suggested that the in vivo midpoint potential of the primary quinone acceptor in PS II (QA) is lowered in both psbS mutant lines. This heretofore-unsuspected role for PS II-S is discussed with regard to: (1) numerous prior reports indicating plasticity of the redox potential of QA and (2) the basis for the contrasting regulation of quantum yields of PS I and II in npq4-1 and npq4-9. 相似文献
7.
Cline Dimier Federico Corato Giovanni Saviello Christophe Brunet 《Journal of phycology》2007,43(2):275-283
The photophysiological properties of strain RCC 237 belonging to the marine picoplanktonic genus Picochlorum, first described by Henley et al., were investigated under different photon flux densities (PFD), ranging from 40 to 400 μmol photons· m?2·s?1, mainly focusing on the development of the xanthophyll cycle and its relationship with the nonphotochemical quenching of fluorescence (NPQ). The functioning of the xanthophyll cycle and its photoprotective role was investigated by applying a progressive increase of PFD and using dithiotreitol and norflurazon to block specific enzymatic reactions in order to study in depth the relationship between xanthophyll cycle and NPQ. These two processes were significantly related only during the gradually increasing light periods and not during stable light periods, where NPQ and zeaxanthin were decoupled. This result reveals that NPQ is a photoprotective process developed by algae only when cells are experiencing increasing PFD or in response to stressful light variations, for instance after a sudden light shift. Results showed that the photobiological properties of Picochlorum strain RCC 237 seem to be well related to the surface water characteristics, as it is able to maintain its photosynthetic characteristics under different PFDs and to quickly activate the xanthophyll cycle under high light. 相似文献
8.
Stefano Cazzaniga Minjae Kim Francesco Bellamoli Jooyoen Jeong Sangmuk Lee Federico Perozeni Andrea Pompa EonSeon Jin Matteo Ballottari 《Plant, cell & environment》2020,43(2):496-509
Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment-binding proteins called light harvesting complexes constituting the external antenna system in the photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: Excitation energy transfer from external antenna to reaction centre was reduced, and state transitions were completely impaired. Moreover, differently from higher plants, photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by nonphotochemical quenching. 相似文献
9.
Bañares-España E López-Rodas V Costas E Salgado C Flores-Moya A 《FEMS microbiology ecology》2007,60(3):449-455
Although populations of cyanobacteria are usually considered to be clonal, their capacity to survive environmental changes suggests intrapopulation genetic variation. We therefore estimated the genetic variability on the basis of two processes important for any photoautotroph - photochemical and nonphotochemical quenching - as well as photosynthetic pigment concentrations. For this purpose, two parameters related to photochemical and nonphotochemical quenching were measured using specific experimental and statistical procedures, in 25 strains of the cyanobacterium Microcystis aeruginosa, along with their contents of chlorophyll a, total carotenoids and phycocyanin. The experimental procedure allowed discrimination between genetic and nongenetic (or residual) variability among strains. The high genetic variability found in photosynthetic pigments and both photosynthetic parameters denotes large differences even among strains isolated from the same community. The high genetic diversity within a population could be important for the evolutionary success of cyanobacteria. 相似文献
10.
Federico Pomar Marta Novo María A. Bernal Fuencisla Merino A. Ros Barceló 《The New phytologist》2004,163(1):111-123
11.
In the present study, we investigated the effects of CO(2) availability on photosynthesis, photoinhibition and pigmentation in two species of amphibious plants, Lobelia cardinalis and Nesaea crassicaulis. The plants were grown emergent under atmospheric conditions and submerged under low and high CO(2) availability. Compared with Lobelia, Nesaea had thin leaves and few stomata in all CO(2) treatments. While Lobelia expressed no variation in anthocyanin content among treatments, Nesaea produced high concentrations of anthocyanin when submerged. Lobelia photosynthesis increased in response to increasing CO(2) availability, and photoinhibition was negatively related to xanthophyll content. By contrast, Nesaea photosynthesis was highest under submerged conditions, and there was no relationship between photoinhibition and the xanthophyll content. We conclude that the response of Lobelia to varying CO(2) availability is similar to that of terrestrial plants and that this species relies on the xanthophyll cycle for nonphotochemical quenching (NPQ) and protection against photoinhibition. By contrast, the thin leaves, few stomata and low levels of chlorophylls and accessory pigments in Nesaea, relative to Lobelia, suggest adaptation to a submerged habitat. While Nesaea does not seem to rely on the xanthophyll cycle or other xanthophylls for NPQ, some role of anthocyanins in the protection against photoinhibition cannot be ruled out, owing to its effect as a sunscreen and as an efficient quencher of free radicals. 相似文献
12.
The effects of elevated (700 micromol mol(-1)) and ambient (350 micromol mol(-1)) CO(2) on gas exchange parameters and chlorophyll fluorescence were measured on bean (Phaseolus vulgaris) during 24 h chilling treatments at 6.5 degrees C. Consistent with previous research on this cultivar, photosynthetic decline during chilling was not significantly affected by CO(2) while post-chilling recovery was more rapid at elevated compared to ambient CO(2). Our primary focus was whether there were also CO(2)-mediated differences in demand on nonphotochemical quenching (NPQ) processes during the chilling treatments. We found that photosystem II quantum yield and total NPQ were similar between the CO(2) treatments during chilling. In both CO(2) treatments, chilling caused a shift from total NPQ largely composed of q(E), the protective, rapidly responding component of NPQ, to total NPQ dominated by the more slowly relaxing q(I), related to both protective and damage processes. The switch from q(E) to q(I) during chilling was more pronounced in the elevated CO(2) plants. Using complementary plots of the quantum yields of photochemistry and NPQ we demonstrate that, despite CO(2) effects on the partitioning of NPQ into q(E) and q(I) during chilling, total NPQ was regulated at both CO(2) levels to maximize photochemical utilization of absorbed light energy and dissipate only that fraction of light energy that was in excess of the capacity of photosynthesis. Photodamage did occur during chilling but was repaired within 3 h recovery from chilling in both CO(2) treatments. 相似文献
13.
Anirban Guha Talent Vharachumu Muhammad F. Khalid Mark Keeley Thomas J. Avenson Christopher Vincent 《Plant, cell & environment》2022,45(1):105-120
Consequences of warming and postwarming events on photosynthetic thermotolerance (PT) and photoprotective responses in tropical evergreen species remain elusive. We chose Citrus to answer some of the emerging questions related to tropical evergreen species' PT behaviour including (i) how wide is the genotypic variation in PT? (ii) how does PT respond to short-term warming and (iii) how do photosynthesis and photoprotective functions respond over short-term warming and postwarming events? A study on 21 genotypes revealed significant genotypic differences in PT, though these were not large. We selected five genotypes with divergent PT and simulated warming events: Tmax 26/20°C (day-time highest maximum/night-time lowest maximum) (Week 1) < Tmax 33/30°C (Week 2) < Tmax 36/32°C (Week 3) followed by Tmax 26/16°C (Week 4, recovery). The PT of all genotypes remained unaltered despite strong leaf megathermy (leaf temperature > air temperature) during warming events. Though moderate warming showed genotype-specific stimulation in photosynthesis, higher warming unequivocally led to severe loss in net photosynthesis and induced higher nonphotochemical quenching. Even after a week of postwarming, photoprotective mechanisms strongly persisted. Our study points towards a conservative PT in evergreen citrus genotypes and their need for sustaining higher photoprotection during warming as well as postwarming recovery conditions. 相似文献
14.
Schery Umanzor Mary Mar Ramírez-García Jose Miguel Sandoval-Gil José Antonio Zertuche-González Charles Yarish 《Journal of phycology》2020,56(2):380-392
This study was designed to understand better if and how juvenile sporophytes of Macrocystis pyrifera can photoacclimate to high-light conditions when transplanted from 10 to 3 meters over 7 d. Acclimation of adult sporophytes to light regimes in the bathymetric gradient has been extensively documented. It primarily depends on photoacclimation and translocation of resources among blades. Among other physiological differences, juvenile sporophytes of M. pyrifera lack the structural complexity shown by adults. As such, juveniles may primarily depend on their photoacclimation capacities to maintain productivity and even avoid mortality under changing light regimes. However, little is known about how these mechanisms operate in young individuals. The capacity of sporophytes to photoacclimate was assessed by examining changes in their photosynthetic performance, pigment content, and bio-optical properties of the blade. Sporophytes nutritional status and oxidative damage were also determined. Results showed that juvenile sporophytes transplanted to shallow water were able to regulate light harvesting by reducing pigment concentration, and thus, absorptance and photosynthetic efficiency. Also, shallow-water sporophytes notably enhanced the dissipation of light energy as heat (NPQ) as a photoprotective mechanism. Generally, these adjustments allowed sporophytes to manage the absorption and utilization of light energy, hence reducing the potential for photo-oxidative damage. Furthermore, no substantial changes were found in the internal reserves (i.e., soluble carbohydrates and nitrogen) of these sporophytes. To our knowledge, these results are the first to provide robust evidence of photoprotective and photoacclimation strategies in juveniles of M. pyrifera, allowing them to restrict or avoid photodamage during shallow-water cultivation. 相似文献
15.
We have used the technique of thermoluminescence (TL) to investigate high-light-induced chlorophyll fluorescence quenching phenomena in barley leaves, and have shown it to be a powerful tool in such investigations. TL measurements were taken from wild-type and chlorina f2 barley leaves which had been dark-adapted or exposed to 20 min illumination of varying irradiance or given varying periods of recovery following strong irradiance. We have found strong evidence that there is a sustained trans-thylakoid pH in leaves following illumination, and that this pH gives rise to quenching of chlorophyll fluorescence which has previously been identified as a slowly-relaxing component of antenna-related protective energy dissipation; we have identified a state of the PS II reaction centre resulting from high light treatments which is apparently able to perform normal charge separation and electron transport but which is non-photochemically quenched, in that the application of a light pulse of high irradiance cannot cause the formation of a high fluorescent state; and we have provided evidence that a transient state of the PS II reaction centre is formed during recovery from such high light treatments, in which electron transport from QAto QBis apparently impaired. 相似文献
16.
Vaughan Hurry Jan M. Anderson Murray R. Badger G. Dean Price 《Photosynthesis research》1996,50(2):159-169
We have examined tobacco transformed with an antisense construct against the Rieske-FeS subunit of the cytochromeb6f complex, containing only 15 to 20% of the wild-type level of cytochrome f. The anti-Rieske-FeS leaves had a comparable chlorophyll and Photosystem II reaction center stoichiometry and a comparable carotenoid profile to the wild-type, with differences of less than 10% on a leaf area basis. When exposed to high irradiance, the anti-Rieske-FeS leaves showed a greatly increased closure of Photosystem II and a much reduced capacity to develop non-photochemical quenching compared with wild-type. However, contrary to our expectations, the anti-Rieske-FeS leaves were not more susceptible to photoinhibition than were wild-type leaves. Further, when we regulated the irradiance so that the excitation pressure on photosystem II was equivalent in both the anti-Rieske-FeS and wild-type leaves, the anti-Rieske-FeS leaves experienced much less photoinhibition than wild-type. The evidence from the anti-Rieske-FeS tobacco suggests that rapid photoinactivation of Photosystem II in vivo only occurs when closure of Photosystem II coincides with lumen acidification. These results suggest that the model of photoinhibition in vivo occurring principally because of limitations to electron withdrawal from photosystem II does not explain photoinhibition in these transgenic tobacco leaves, and we need to re-evaluate the twinned concepts of photoinhibition and photoprotection.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlophenyl)-1,-dimethylurea - Fo and Fo minimal fluorescence when all PS II reaction centers are open in dark- and light-acclimated leaves, respectively - Fm and Fm maximal fluorescence when all PS II reaction centers are closed in dark- and light-acclimated leaves, respectively - Fv variable fluorescence (Fm-Fo) in dark acclimated leaves - Fv variable fluorescence (Fm-Fo) in lightacclimated leaves - NPQ non-photochemical quenching of fluorescence - PS I and PS II Photosystem I and II - P680 primary electron donor of the reaction center of PS II - PFD photosynthetic flux density - QA primary acceptor quinone of PS II - qp photochemical quenching of fluorescence - V+A+Z violaxanthin+antheraxanthin+zeaxanthin 相似文献
17.
18.
In contrast to the many investigations on possible relationships between climate and geographical distributions in macroalgae, there are almost no similar studies regarding microalgae. In this study we consider the potential influence of temperature on patterns of distribution of six Cosmarium strains isolated from various climate zones that have been cultured long-term (> 15 years) in a relatively low temperature–low light regime. Growth and photosynthetic parameters, obtained from PAM fluorometry, were used to estimate the physiological characteristics of the strains during and after various temperature treatments. Acclimation to constant temperature and light conditions tended to affect photosynthetic parameters more than algal growth characteristics. However, all of the Cosmarium strains demonstrated physiological responses that were consistent with their source location under both low and high temperature conditions, confirming that such responses are genetically preserved. The Cosmarium strains displayed photosynthetic capacities and levels of the onset of saturation that repeatedly exceeded values recorded for other microalgae and seaweeds, indicating that these desmid strains are adapted to high light. This observation, as well as the relatively high growth temperature optima for all of the Cosmarium strains, provides some support for Coesel's hypothesis on the origin of desmids in the tropical zone. Interestingly, the Cosmarium strains used in this study demonstrated not only adaptive characteristics in accordance with the temperature prevailing at their sampling sites, but also with regard to their evolutionary origin. 相似文献
19.
Katherina Petrou Sven A. Kranz Martina A. Doblin Peter J. Ralph 《Journal of phycology》2012,48(1):127-136
The photosynthetic efficiency and photoprotective capacity of the sea‐ice diatom, Fragilariopsis cylindrus (Grunow) W. Krieg., grown in a matrix of nitrogen repletion and depletion at two different temperatures (?1°C and +6°C) was investigated. Temperature showed no significant effect on photosynthetic efficiency or photoprotection in F. cylindrus. Cultures under nitrogen depletion showed enhanced photoprotective capacity with an increase in nonphotochemical quenching (NPQ) when compared with nitrogen‐replete cultures. This phenomenon was achieved at no apparent cost to the photosynthetic efficiency of PSII (FV/FM). Nitrogen depletion yielded a partially reduced electron transport chain in which maximum fluorescence (FM) could only be obtained by adding 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU). reoxidation curves showed the presence of QB nonreducing PSII centers under nitrogen depletion. Fast induction curves (FICs) and electron transport rates (ETRs) revealed slowing of the electrons transferred from the primary (QA) to the secondary (QB) quinone electron acceptors of PSII. The data presented show that nitrogen depletion in F. cylindrus leads to the formation of QB nonreducing PSII centers within the photosystem. On a physiological level, the formation of QB nonreducing PSII centers in F. cylindrus provides the cell with protection against photoinhibition by facilitating the rapid induction of NPQ. This strategy provides an important ecological advantage, especially during the Antarctic spring, maintaining photosynthetic efficiency under high light and nutrient‐limiting conditions. 相似文献
20.
Gennady Ananyev † Zbigniew S. Kolber† Dennis Klimov† Paul G. Falkowski†‡ Joseph A. Berry§ Uwe Rascher § Robin Martin§ Barry Osmond 《Global Change Biology》2005,11(8):1195-1206
Determining the spatial and temporal diversity of photosynthetic processes in forest canopies presents a challenge to the evaluation of biological feedbacks needed for improvement of carbon and climate models. Limited access with portable instrumentation, especially in the outer canopy, makes remote sensing of these processes a priority in experimental ecosystem and climate change research. Here, we describe the application of a new, active, chlorophyll fluorescence measurement system for remote sensing of light use efficiency, based on analysis of laser‐induced fluorescence transients (LIFT). We used mature stands of Populus grown at ambient (380 ppm) and elevated CO2 (1220 ppm) in the enclosed agriforests of the Biosphere 2 Laboratory (B2L) to compare parameters of photosynthetic efficiency, photosynthetic electron transport, and dissipation of excess light measured by LIFT and by standard on‐the‐leaf saturating flash methods using a commercially available pulse‐modulated chlorophyll fluorescence instrument (Mini‐PAM). We also used LIFT to observe the diel courses of these parameters in leaves of two tropical forest dominants, Inga and Pterocarpus, growing in the enclosed model tropical forest of B2L. Midcanopy leaves of both trees showed the expected relationships among chlorophyll fluorescence‐derived photosynthetic parameters in response to sun exposure, but, unusually, both displayed an afternoon increase in nonphotochemical quenching in the shade, which was ascribed to reversible inhibition of photosynthesis at high leaf temperatures in the enclosed canopy. Inga generally showed higher rates of photosynthetic electron transport, but greater afternoon reduction in photosynthetic efficiency. The potential for estimation of the contribution of outer canopy photosynthesis to forest CO2 assimilation, and assessment of its response to environmental stress using remote sensing devices such as LIFT, is briefly discussed. 相似文献