首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a procedure to construct an artificial corneal epithelium from cryopreserved limbal stem cells (LSCs) for corneal transplantation. The LSCs were separated from limbal tissue of male goats. The primary LSCs were identified by flow cytometry and were expanded. They were examined for stem cell-relevant properties and cryopreserved in liquid nitrogen. Cryopreserved LSCs were thawed and then transplanted onto human amniotic membrane, framed on a nitrocellulose sheet, to construct corneal epithelium sheets. The artificial corneal epithelium was transplanted into the right eye of pathological models of total limbal stem cell deficiency (LSCD). Then, the effects of reconstruction were evaluated by clinical observation and histological examination. Polymerase chain reaction analysis was used to detect the SRY gene. The data showed that transplantation of cryopreserved LSCs, like fresh LSCs, successfully reconstructed damaged goat corneal surface gradually, but the SRY gene expression from male goat cells could only be detected in the first 2 months after transplantation. The therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of cryopreserved LSCs. This study provides the first line of evidence that cryopreserved LSCs can be used for reconstruction of damaged corneas, presenting a remarkable potential source for transplantation in the treatment of corneal disorders.  相似文献   

2.
This study aimed to evaluate proposed molecular markers related to eye limbal stem cells (SC) and to identify novel associated genes. The expression of a set of genes potentially involved in stemness was assessed in freshly prepared limbal, corneal and conjunctival tissues. PAX6, AC133, K12 and OCT4 were detected in all the tissues and p63(+)/K3(-)/K12(+)/Nodal(+)/Cx43(+) were expressed in conjunctival, p63(-)/K3(+)/K12(+)/Nodal(-)/Cx43(+) in corneal, and p63(+)/K3(-)/K12(-)/Nodal(-)/Cx43(-) in limbal tissues. Limbal explants were cultured on human amniotic membrane for 21 days. The cells expressed p63 but not K3, K12, Nodal and Cx43, however, the expression of K3, K12 and Cx43 was detected, and p63 and the high BrdU-labeling index decreased with more culture. Ultrastructure analysis of the cultured cells showed typically immature organization of intracellular organelles and architecture. Our data suggest that limbal, corneal and conjunctival tissues are heterogeneous with some progenitors. Also, the expression of traditional SC markers may not be a reliable indicator of limbal SC and there is an increasing need to determine factor(s) involved in their stemness.  相似文献   

3.
In this review, we describe a population of adult stem cells that are currently being successfully used in the clinic to treat blinding ocular surface disease, namely limbal epithelial stem cells (LESC). The function and characteristics of LESC and the challenges faced in making use of their therapeutic potential will be examined. The cornea on the front surface of the eye provides our window on the world. The consistency and functionality of the outer-most corneal epithelium is essential for vision. A population of LESC are responsible for replenishing the epithelium throughout life by providing a constant supply of daughter cells that replace those constantly removed from the ocular surface during normal wear and tear and following injury. LESC deficiency results in corneal inflammation, opacification, vascularisation and severe discomfort. The transplantation of cultured LESC is one of only a few examples of the successful use of adult stem cell therapy in patients. The clinical precedence for the use of stem cell therapy and the ready accessibility of a transparent stem cell niche make the cornea a unique model for the study of adult stem cells in health and disease. The authors thank the Special Trustees of Moorfields Eye Hospital (J.T.D.) and the BBSRC (M.N.) for financial support.  相似文献   

4.
The cornea is the clear tissue at the front of the eye which enables the transmission of light to the retina for normal vision. The surface of the cornea is composed of an epithelium which is renewed by stem cells located at the periphery of the cornea, a region known as the limbus. These limbal stem cells can become deficient as a result of various diseases of the eye's surface, resulting in the blinding disease of limbal stem cell deficiency. The treatment of this disease is often difficult and complex. In 1997, it was proposed that a small amount of limbal tissue containing limbal stem cells could be culture expanded and then transplanted. Since then various case reports and case series have been reported showing promising results. Here, we review the outcomes of this procedure over the past 13 years with the aim of highlighting the best culture and surgical techniques to date.  相似文献   

5.
In search of markers for the stem cells of the corneal epithelium   总被引:5,自引:0,他引:5  
The anterior one-fifth of the human eye is called the cornea. It consists of several specialized cell types that work together to give the cornea its unique optical properties. As a result of its smooth surface and clarity, light entering the cornea focuses on the neural retina allowing images to come into focus in the optical centres of the brain. When the cornea is not smooth or clear, vision is impaired. The surface of the cornea consists of a stratified squamous epithelium that must be continuously renewed. The cells that make up this outer covering come from an adult stem cell population located at the corneal periphery at a site called the corneal limbus. While engaging in the search for surface markers for corneal epithelial stem cells, vision scientists have obtained a better understanding of the healthy ocular surface. In this review, we summarize the current state of knowledge of the ocular surface and its adult stem cells, and analyse data as they now exist regarding putative corneal epithelial stem cell markers.  相似文献   

6.
Limbal stem cells (LSC) maintain the transparency of the corneal epithelium. Chemical burns lead the loss of LSC inducing an up-regulation of pro-inflammatory and pro-angiogenic factors, triggering corneal neovascularization and blindness. Adipose tissue-derived mesenchymal stem cells (AT-MSC) have shown promise in animal models to treat LSC deficiency (LSCD), but there are not studies showing their efficacy when primed with different media before transplantation. We cultured AT-MSC with standard medium and media used to culture LSC for clinical application. We demonstrated that different media changed the AT-MSC paracrine secretion showing different paracrine effector functions in an in vivo model of chemical burn and in response to a novel in vitro model of corneal inflammation by alkali induction. Treatment of LSCD with AT-MSC changed the angiogenic and inflammatory cytokine profile of mice corneas. AT-MSC cultured with the medium that improved their cytokine secretion, enhanced the anti-angiogenic and anti-inflammatory profile of the treated corneas. Those corneas also presented better outcome in terms of corneal transparency, neovascularization and histologic reconstruction. Priming human AT-MSC with LSC specific medium can potentiate their ability to improve corneal wound healing, decrease neovascularization and inflammation modulating paracrine effector functions in an in vivo optimized rat model of LSCD.  相似文献   

7.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition.  相似文献   

8.
Animal models have contributed greatly to our understanding of human diseases. Here, we focus on cornea epithelial stem cell (CESC) deficiency (commonly called limbal stem cell deficiency, LSCD). Corneal development, homeostasis and wound healing are supported by specific stem cells, that include the CESCs. Damage to or loss of these cells results in blindness and other debilitating ocular conditions. Here we describe the contributions from several vertebrate models toward understanding CESCs and LSCD treatments. These include both mammalian models, as well as two aquatic models, Zebrafish and the amphibian, Xenopus. Pioneering developments have been made using stem cell transplants to restore normal vision in patients with LSCD, but questions still remain about the basic biology of CESCs, including their precise cell lineages and behavior in the cornea. We describe various cell lineage tracing studies to follow their patterns of division, and the fates of their progeny during development, homeostasis, and wound healing. In addition, we present some preliminary results using the Xenopus model system. Ultimately, a more thorough understanding of these cornea cells will advance our knowledge of stem cell biology and lead to better cornea disease therapeutics.  相似文献   

9.
10.
Objective: To evaluate the efficacy of preserved human amniotic membrane transplantation for reconstruction of the corneal surface diseases. Methods: Preserved human amniotic membrane transplantations were performed in 84 eyes of 78 patients for corneal surface reconstruction. The indications were limbal stem cell deficiency from Steven–Johnson syndrome, chemical burn and herpes keratitis (27 eyes), bullous keratopathy (26 eyes), persistent epithelial defect and dellen (17 eyes), band keratopathy (11 eyes), preparing for prosthesis (1 eye), corneal ulcer (1 eye) and acute chemical burn (1 eye). Results: Success was noted in 83.3% (70/84) eyes, partial success in 13.1% (11/84) eyes, and failure in 3.6% (3/84) eyes for an average follow-up of 10.5 months (3 – 29 months). No patient developed major immediate post-operative complications. Conclusion: Amniotic membrane transplantation can reduce inflammation, promote corneal epithelial healing, and decrease irritation in corneal surface problems.  相似文献   

11.
12.
13.
Plasticity of epidermal adult stem cells derived from adult goat ear skin   总被引:3,自引:0,他引:3  
Here we report the isolation and characterization of pluripotent stem cells from adult goat skin. We found that these primary cells have the properties of embryonic stem cells (ESC), including the expression of appropriate immunological markers and the capability of forming embryoid bodies. The subcultured cells also show the characteristics of stem cells, such as the expression of CK19, beta(1-)integrin, P63, and formation of holo-clones in culture. Therefore, we termed these cells epidermal adult stem cells (EpiASC), although their origin was not identified. We have shown that clones of individual EpiASC proliferate and differentiate in culture to produce neurons, cardiomyocytes, osteoblasts, and occytes. Further, we cultivated EpiASC on bioengineered dermis and denuded human amniotic membrane (HAM), to reconstruct artificial skin and corneal epithelium. We successfully transplanted those artificial tissues in goats with acute full-thickness skin defect (AFTSD) and limbal stem cell deficiency (LSCD), respectively. Our results showed that indeed EpiASC reconstructed the skin (hair was observed in restored areas), and repaired the damaged cornea of goats with total LSCD. These data confirm that EpiASC can differentiate into different functional cell types in vivo or in vitro. Due to their high degree of inherent plasticity, and to their easy accessibility for collection from the skin, EpiASC are excellent candidate sources for diverse cell therapies.  相似文献   

14.
目的 建立一种简单的人脐带间充质干细胞分离培养方法.方法 取新鲜脐带,剪成5 cm长的小段,直接剪碎为糊状,加入含10%胎牛血清的DMEM/F12在培养瓶中培养,光学显微镜下观察细胞的生长特征,运用流式细胞仪检测分析细胞的抗原标志表达,并检测其体外多向分化潜能.结果 运用不剥离血管组织、不用酶消化的组织贴块培养法可以从...  相似文献   

15.
Limbal stem cell (LSC) deficiency causes progressive loss of vision but may be treated by transplant of autologous LSCs. Cryopreservation has the potential to indefinitely extend the lifespan of LSCs allowing re-transplant in case of graft failure. In this study, we aimed to identify the optimal cryoprotectant and cryoprotectant concentration for LSC cultures. Suspension cultures derived from cadaveric corneoscleral rims were cooled to 4 °C with Me2SO, propylene glycol or ethylene glycol at a concentration of 5%, 10% or 15%. Cell tolerance was measured in terms of membrane integrity, colony-forming efficiency and alamarBlue® reduction. Increasing cryoprotectant concentration above 5% reduced membrane integrity, metabolism and colony-forming efficiency. Cryoprotectant choice did not significantly influence these characteristics. Cells demonstrating Side Population were maintained after cryopreservation with 5% propylene glycol in vapour phase liquid nitrogen for 1 week, indicating that cryopreservation of LSCs with relatively low cryoprotectant concentration (5%) has promise in low-temperature eye banking.  相似文献   

16.
Human Amniotic Epithelial Cells (hAEC) isolated from term placenta are a promising source for regenerative medicine. However, it has long been debated whether the hAEC population consists of heterogeneous or homogeneous cells. In a previous study, we investigated the characteristics of hAEC isolated from four different regions of the amniotic membrane finding significant heterogeneity. The aim of this study was to evaluate the hepatic differentiation capability of hAEC isolated from these four regions. Human term placentae were collected after caesarean section and hAEC were isolated from four regions of the amniotic membrane (R1-R4, according to their relative distance from the umbilical cord) and treated in hepatic differentiation conditions for 14 days. hAEC-derived hepatocyte-like cells showed marked differences in the expression of hepatic markers: R4 showed higher levels of Albumin and Hepatocyte Nuclear Factor (HNF) 4α whereas R1 expressed higher Cytochrome P450 enzymes, both at the gene and protein level. These preliminary results suggest that hAEC isolated from R1 and R4 of the amniotic membrane are more prone to hepatic differentiation. Therefore, the use of hAEC from a specific region of the amniotic membrane should be taken into consideration as it could have an impact on the outcome of therapeutic applications.  相似文献   

17.
Rat limbal niche cells (LNCs) have been proven to induce transdifferentiation of oral mucosal epithelial cells (OMECs) into corneal epithelial-like cells termed transdifferentiated oral mucosal epithelial cells (T-OMECs). This investigation aimed to evaluate the effect of subconjunctival T-OMEC injections on alkali-induced limbal stem cell deficiency (LSCD) in rats. LNCs were cocultured with OMECs in the Transwell system to obtain T-OMECs, with NIH-3T3 cells serving as a control. Subconjunctival injection of single T-OMEC or OMEC suspension was performed immediately after corneal alkali injury. T-OMECs were prelabeled with the fluorescent dye CM-DiI in vitro and tracked in vivo. Corneal epithelial defect, opacity, and neovascularization were quantitatively analyzed. The degree of corneal epithelial defect (from day 1 onward), opacity (from day 5 onward), and neovascularization (from day 2 onward) was significantly less in the T-OMEC group than in the OMEC group. Cytokeratin 12 (CK12), pigment epithelium–derived factor, and soluble fms-like tyrosine kinase-1 were expressed at a higher rate following T-OMEC injection. Some CM-DiI-labeled cells were found to be coexpressed with CK12, Pax6, and ΔNp63α in the corneal epithelium after subconjunctival injection. Subconjunctival injection of T-OMECs prevents conjunctival invasion and maintains a normal corneal phenotype, which might be a novel strategy in the treatment of LSCD:  相似文献   

18.
Human embryonic stem (ES) cells have the potential to differentiate into all cell types. As these cells may be able to provide an unlimited cell source for transplantation therapies, it is necessary to establish reliable methods for their handling and manipulation, including human ES cell cryopreservation. Here, we report the development of a simple and efficient cryopreservation method for primate ES cell lines using vitrification in conventional cryovials. Using standard slow-rate cooling methods, the cryopreservation efficiency for cynomolgus monkey ES cell lines was approximately 0.4%, while that for a human ES cell line was virtually 0%. Primate ES cell lines, however, were successfully cryopreserved by the present vitrification method using conventional cryovials yielding a survival rate of about 6.5% for monkey ES cells and 12.2% for human ES cells. Vitrified ES cells quickly recovered after thawing and exhibited a morphology indistinguishable from non-vitrified cells. In addition, they retained a normal karyotype and continued to express ES cell markers after thawing. Thus, our vitrification ES cell cryopreservation method expands the utility of primate ES cells for various research and clinical purposes.  相似文献   

19.
20.
The standard culture method for neural stem cells cannot prevent the attachment of neurospheres, which eventually result in differentiation. This study developed a new method for long-term neural stem cell cultivation. In the antiattachment group, neural stem cells were cultured in flasks coated with 1.5% agarose gel. As a control, cells were cultured in plastic flasks. The 5-bromine-deoxyuridine incorporation assay was used to determine the S-phase labeling index of both groups. The methyl thiazolyl tetrazolium (MTT) colorimetric assay was used to determine the total cell vitality. After a 3-mo culture, the spontaneous differentiation of stem cells was studied using immunocytochemistry for neuroepithelial stem cell protein. We found that neural stem cells grew rapidly in the antiattachment flasks. There was no statistically significant difference between the two groups in terms of the S-phase labeling index or MTT assay. When cultured for 3 mo in vitro, many more cells differentiated in the control than in the antiattachment group (32.05 vs. 0.64%, P < 0.01). Moreover, the neural stem cells in the antiattachment group remained multipotent. Therefore, flasks coated with agarose gel are suitable for long-term neural stem cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号