首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

2.
Condensation of 1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranos-3-ulose (1) with diethyl cyanomethylphosphonate afforded a mixture of the cis- and trans-3-cyanomethylene-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranoses (2) in 80% yield. Catalytic reduction of 2 yielded 3-C-cyanomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (4) exclusively. Palladium and hydrogen was found to rearrange the exocyclic double bond of 2 to give the 3,4-ene (3). Catalytic reduction of 3 also proceeded stereospecifically to yield 4. Selective hydrolysis of 4 yielded the diol 5, which was cleaved with periodate and the product reduced with sodium borohydride to afford crystalline 3-C-cyanomethyl-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (6) in 87% yield. Catalytic reduction of the latter with hydrogen and platinum in the presence of acetic anhydride and ethanol gave the crystalline l-amino sugar, 3-C-(2-acetamidoethyl)-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (7) in 92% yield.  相似文献   

3.
Photoamidation of 3-O-acetyl-1,2:5,6-di-O-isopropylidene-α-d-erythro-hex-3-enofuranose (1) afforded 3-O-acetyl-4-C-carbamoyl-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (2) and 3-O-acetyl-3-C-carbamoyl-1,2:5,6-di-O-isopropylidene-d-α-allofuranose (3) in 65 and 26% yields, respectively (based on consumed1). Treatment of2 with 5% hydrochloric acid in methanol yielded the spiro lactone5, which was deacetylated to yield7. Reduction of5 with sodium borohydride afforded 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-gulofuranose (9) in 79% yield. Oxidation of9 with sodium metaperiodate afforded a dialdose that was reduced with sodium borohydride to give 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-erythro-pentofuranose (11) in 88% yield. Treatment of the acetate12, derived from11, with trifluoroacetic acid, followed by acetylation, afforded the branched-chain sugar acetate14. Condensation of the glycosyl halide derived from14 withN6-benzoyl-N6, 9-bis-(trimethylsilyl)adenine yielded an equimolar anomeric mixture of protected nucleosides15 and16 in 40% yield. Treatment of the latter compounds with sodium methoxide in methanol afforded 9-[4-C-(hydroxymethyl)-β-d-erythro-pentofuranosyl]-adenine (17) and the α-d anomer18. The structure of3 was determined by correlation with the known 5,3′-hemiacetal of 3-C-(hydroxymethyl)-1,2-O-isopropylidene-α,α′-d-ribo-pentodialdose (25).  相似文献   

4.
The reaction of 1,2:5,6-di-O-isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (4) with mercuric azide in hot 50% aqueous tetrahydrofuran yielded, after reductive demercuration, 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-α-D-glucofuranose (5). Partial, acid hydrolysis of5 afforded the diol7, which gave 3-azido-3-deoxy-1,2-O-isopropylidene-5,6-di-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (8) on sulphonylation. On hydrogenation over a platinum catalyst and N-acetylation, the dimethanesulphonate 8 furnished 3,6-acetylepimino-3,6-dideoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (9), which was also prepared by an analogous sequence of reactions on 3-azido-3-deoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-6-O-toluene-p-sulphonyl-α-D-glucofuranose (13). The formation of the N-acetylepimine 9 establishes the D-gluco configuration for 5.1,2-O-Isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (20) reacted with mercuric azide in aqueous tetrahydrofuran at ≈85° to give 3,6-anhydro-1,2-O-isopropylidene-3-C-methyl-α-D-glucofuranose (22) as a result of intramolecular participation by the C-6 hydroxyl group in the initial intermediate.  相似文献   

5.
5,6-Dideoxy-6-C-nitro-5-(phenylphosphino)-d-glucopyranose was prepared by addition of phenylphosphine to 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-α-d-xylo-hex-5-enofuranose, followed by hydrolysis of the resulting 3-O-acetyl-5,6-dideoxy-1,2-O-isopropylidene-6-C-nitro-5-(phenylphosphino)-d-glucofuranose (10). Acetylation of 10 gave the crystalline 1,2,3,4-tetraacetate (16). 5,6-Dideoxy-6-C-nitro-5-(phenylphosphinyl)-d-glucopyranose (15) was obtained by oxidation of 10, and hydrolysis of the resulting 5-phenylphosphinyl compound. Acetylation of 15 gave the 1,2,3,4-tetraacetate (17). Although the n.m.r. spectrum of 17 was complex, the n.m.r. spectrum of 16 was rather simple. The n.m.r. data showed that 16 is the α anomer in the 4C1(d) conformation.  相似文献   

6.
Protected sugar derivatives having one free hydroxyl group may be deoxygenated at the alcoholic position by ultraviolet irradiation of the corresponding dimethylthiocarbamic esters: a concomitant process leads also to the original alcohol. Thus, on photolysis, the 6-dimethylthiocarbamate (1) or 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (3) gives 6-deoxy- 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (2) together with 3. Likewise, the 4-dimethylthiocarbamate (6) of 1,6-anhydro-2.3-O-isopropylidene-β-D-mannopyranose (8) gives a mixture of the 4-deoxy derivative 7 and the alcohol 8. 3-Deoxy-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranose (10) was obtained by irradiation of 3-O-(dimethylthiocarbamoyl)-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (9), and was accompanied by 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (11). The 3-deoxy-3-iodo analog (14) of 11 underwent conversion into 10 by photolysis, and the deoxy sugar 10 was also prepared from 3,3'-dithiobis(1,2:5,6-di-O-isopropylidene-α-D--glucofuranose) (12) by the action of Raney nickel. Photolysis of the 2-dimethylthiocarbamate (16) of methyl 3,4-O-isopropylidene-β-L-arabinopyranoside (18) gave the 2-deoxy derivative (17), together with the parent alcohol 18, and the same pair of products was obtained by the action of tributylstannane on the 2-(methylthio)thiocarbonyl derivative (19) of 18, although the dimethylthiocarbamate 16 was unreactive toward tributylstannane.  相似文献   

7.
5-Deoxy-1,2-O-isopropylidene-5-C-(methoxyphenylphosphinyl)-3-O-methyl-α-d-ribofuranose (4) was prepared from 1,2-O-isopropylidene-3-O-methyl-α-d-ribo-pentodialdo-1,4-furanose by an addition reaction with methyl phenylphosphinate, followed by deoxygenation of the terminal HOCHP group of the adduct by successive reaction with 1,1′-thiocarbonyldiimidazole and tributyltin hydride. Treatment of 4 with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by deacetonation with mineral acid, and acetylation with acetic anhydride—pyridine, gave mainly the two title compounds, which were isolated by column chromatography on silica gel, and characterized by 90-MHz, 1H-n.m.r.-spectral analysis.  相似文献   

8.
The reaction of 1,2-O-isopropylidene-α- d-glucofuranose with sulfuryl chloride at 0° and at 50° afforded 6-chloro-6-deoxy-1,2-O-isopropylidene-α- d-glucofuranose 3,5-bis(chlorosulfate) ( 3) and 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose 3-chlorosulfate ( 7, not characterised), respectively. Dechlorosulfation of 3 afforded the hydroxy derivative, whereas treatment of 3 with pyridine gave the 3,5-(cyclic sulfate). Dechlorosulfation of 7 afforded 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose which, on acid hydrolysis, was converted into 3,6-anhydro-5-chloro-5-deoxy- l-idofuranose. 5-Chloro-5-deoxy-α- l-idofuranosidurono-6,3-lactone and 5-chloro-5-deoxy-β- l-idofuranurono-6,3-lactone derivatives were also prepared.  相似文献   

9.
Addition of ethyl isocyanoacetate to 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose in ethanolic sodium cyanide gave two oxazolines that were hydrolysed during chromatography to two isomeric ethyl 3-O-benzyl-6-deoxy-6-formamido-1,2-O-isopropylidene-heptofuranuronates. Similarly, 1,2-O-isopropyl-idene-3-O-methyl-α-D-xylo-pentodialdo-1,4-furanose gave the 3-O-methyl-heptofuranuronates 7 and 11. Reduction of 7 and 11 gave N-methylamino esters that exhibited Cotton effects from which the configurations at C-6 of 7 and 11 were deduced. The chiralities at C-5 of 7 and 11 were established by tetrahydropyranlation of 7 and 11, followed by consecutive treatment with bis(2-methoxyethoxy)aluminium hydride, periodate, sodium borohydride, and dilute acid, to give 1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranose and its β-L-ido epimer, respectively. Attempts to methylate HO-5 of 7 and 11 resulted in elimination. On formylaminomethylenation (ethyl isocyanoacetate and potassium hydride in tetrahydrofuran), 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose and its 3-O-methyl-α-D-xylo epimer each gave (E)- and (Z)-mixtures of alkenes that were hydrogenated to give mixtures of 5,6-dideoxy-6-formamido-heptofuranuronates.  相似文献   

10.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

11.
3-C-(Acetamidomethyl)-1,2-O-isopropylidene-β-l-threofuranose (4) and the 3-acetate (5) have been prepared in high yields from mono-O-isopropylidene-d-apiose [3-C-(hydroxymethyl)-1,2-O-isopropylidene-β-l-threofuranose] (1). Acid-catalyzed methanolysis of 4 caused migration of the isopropylidene group and the formation of methyl 4-acetamido-4-deoxy-3-C-(hydroxymethyl)-2,3-O-isopropylidene-β-d-erythrofuranoside (8) in 25% yield. The major product (45%) from the acetolysis of 4 was also a pyrrolidine derivative, namely, 4-acetamido-3-C-(acetoxymethyl)-1-O-acetyl-4-deoxy-2,3-O-isopropylidene-β-d-erythrofuranose (10). Acetolysis of 5 removed the isopropylidene group and gave four acetylated pyrrolidines (isomeric at C-1 and C-2). Conditions which resulted in minimal epimerization at C-2 were established, and the major isomers 12 and 13 were isolated in reasonable yields. 1H- and 13C-n.m.r. data for equilibrium solutions of the pyrrolidines, and for intermediates 1-5, are given.  相似文献   

12.
《Carbohydrate research》1986,154(1):71-80
Epoxidation of (E)-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose by alkaline hydrogen peroxide gave a mixture of 3,4-anhydro-1-deoxy-5,6O-isopropylidene-3-C-methyl-d-arabino- (2) and -d-xylo-hexulose (3) that was resolved by chromatography. From the reaction of 2 with 3-chloroperbenzoic acid, the Baeyer-Villiger rearrangement product (2R)-2-O-acetyl-2,3-anhydro-1-deoxy-4,5-O-isopropylidene-d-eythro-pentulose hydrate was isolated. The structures and configurations of the above products were established on the basis of chemical transformations and anlytical and spectroscopic data.  相似文献   

13.
Stereospecific hydroxylation of (E)-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-(methoxycarbonylmethylene)-α-D-xylo-hexofuranose (2) with potassium permanganate in pyridine afforded pure 3-C-[(R)-hydroxy(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-galactofuranose (5) in 55% yield. Mesylation of the diol 5 in pyridine yielded the monomethanesulfonate 6 and, in addition, a small proportion of an unsaturated, exocyclic sulfonate 7. Treatment of 6 with sodium azide in N-N-dimethylformamide and reduction of the resultant α-azido ester 9 afforded methyl D- (and L-) 2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycinate, (11a) and (10a), respectively. Basic hydrolysis of 11a and 10a yielded D- and L-2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycine (11b) and (10b), respectively. The structures of the glycosyl α-amino acids were correlated with that of L-alanine by circular dichroism.  相似文献   

14.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

15.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

16.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

17.
《Carbohydrate research》1987,166(2):211-217
6-O-Benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-oct-7-ynopyranose reacted with tributyltin hydride to afford (Z-6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-8-(tributylstannyl)-l-glycero-α-d-galacto-oct-7-enopyranose, which was subsequently isomerized to the E-olefin 4. Replacement of the tributyltin moietey with lithium in 4 afforded the vinyl anion which reacted with 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-pentodialdo-1,4-furanose, furnishing 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-heptopyranos-7-ylidene] -60-deoxy-1,2-O-isopropylidene-α-d-gluco- (6) and -β-l-ido-furanose (7) in yields of ∼70 or ∼87% (depending on the temperature of the reaction). The configurations of the new chiral centers in 6 and 7 were determined by their conversion into 3-O-benzyl-1,2-O-isopropylidene-α-d-gluco- and -β-l-ido-furanose, respectively. Oxidation of 6 and 7 gave the same enone, 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto- heoptopyranos-7-ylidene]-6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose.  相似文献   

18.
Stereospecific hydroxylation of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-trans-and 3-C-cis-(methoxycarbonylmethylene)-α-D-ribo-hexofuranose (2 and 3, respectively), with potassium permanganate in pyridine afforded 3-C-[S- and R-hydroxy-(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, (6 and 7, respectively), in a combined yield, after chromatography, of 43%. Selective formation of monomethanesulfonates (9a and 10a) and p-toluenesulfonates (9b and 10b), followed by treatment with sodium azide and reduction of the azide, afforded the methyl 2-D-(and 2-L-)(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)-glycinates (12a and 13a, respectively). Basic hydrolysis of the latter compounds yielded 2-D- and 2-L-(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)glycine (12b and 13b, respectively). The structures of the glycosyl amino acids were correlated with that of L-alanine by circular dichroism.  相似文献   

19.
The course of Grignard addition-reactions to 1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose (1) has been examined as a function of the nature of the reagent, the solvent, the halide, and the temperature. Ethylmagnesium bromide in ether at — 14° converted 1 into 60% of the 3-C-ethyl-D-allo adduct 2. The latter was convertible in 90% yield into the 3-benzyl ether 6, despite the tertiary nature of the hydroxyl group. The use of tetrahydrofuran (THF) or THF-ether at higher temperatures, or of ethylmagnesium iodide, lowered the yield of 2 and gave substantial proportions of such side products as 1,2:5,6-di-O-isopropylidene-α-D-allofuranose (3). 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (4), and the hydrate (5) of the starting ketone 1. Phenylmagnesium bromide in ether or THF converted 1 into the 3-C-phenyl-D-allo derivative 7 in 84% yield, accompanied by only minor proportions of side products; the latter were the 3-C-phenyl-D-gluco adduct 8 and the product (9) of 5,6-dioxolane ring-opening. The structures of 8 and 9 were confirmed by an acetylation-deacetylation sequence, and by n.m.r. spectroscopy. The 3-C-phenyl-D- allo derivative 7 could be converted in 95% yield into its 3-benzyl ether 10. Cyclohexylmagnesium bromide reacted with 1 in ether or THF at various temperatures to give 3-C-cyclohexyl-1,2:5,6-di-O-isopropylidene-α-D)-allofuranose (11) in low yields; the main product generally encountered was 3. with variable proportions of 4, 1,2-O-isopropylidene-α-D-allofuranose (18), the hydrate 5, and a dimeric product 19 (further characterized as its oxime 20). Compound 11 was, however, obtainable in >95% yield by reducing 7 with hydrogen in the presence of rhodium-on-alumina. Phenylmagnesium bromide reacted with the 4-ketone derivative 25 in THF at 0° to give 83% of 1,6-anhydro-2,3-O-isopropylidene-3-C-phenyl-β-D-talopyranose (26), and no side-products were detected.  相似文献   

20.
1,2:5,6-Di-O-isopropylidene-α-D-allofuranose (1), 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2), and 1,2.3,4-di-O-isopropylidene-α-D-galactopyranose (3) have been separately treated in pyridine solution with trifluoromethanesulphonic anhydride, 2,2,2-trifluoroethanesulphonyl chloride, and pentaflucrobenzenesulphonyl chloride. Both 1 and 2 afforded the anticipated sulphonic esters. Although 3 also gave the 2,2,2-trifluoroethanesulphonic and pentafluorobenzenesulphonic esters, the reaction with trifluoromethanesulphonic anhydride yielded 6-deoxy-1,2:3,4-di-O isopropylidene-6-pyridino-α-D-galactopyranose trifluoromethanesulphonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号