首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

2.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

3.
The phylogenetic position of a freshwater green alga, Aegagropila linnaei (Cladophorales, Ulvophyceae), was investigated using nuclear 18S rRNA gene sequences. This alga has usually been called Cladophora aegagropila (L.) Rabenhorst or Cladophora sauteri (Nees ex Kütz.) Kütz. Based on morphology, it was formerly classified into the section Aegagropila or into the subgenus Aegagropila, together with several marine species of the genus Cladophora. This classification is not supported by the present phylogenetic analyses in which two very distinct Cladophorales clades are recognized. Aegagropila linnaei groups together in a well‐supported clade with Cladophora sp., Pithophora sp., Chaetomorpha okamurae, Arnoldiella conchophila, Wittrockiella lyallii, and Cladophora conchopheria. Aegagropila linnaei and its closely related species share some ultrastructural and biochemical characteristics, like pyrenoid structure, carotenoid composition, and cell wall composition. Freshwater species, included in the analysis, were located in two distantly related lineages, indicating that adaptation from a marine to a freshwater habitat has happened at least twice independently in the Cladophorales.  相似文献   

4.
Species currently classified within the cyanobacterial genus Microcoleus were determined to fall into two distinct clades in a 16S rDNA phylogeny, one containing taxa within the Oscillatoriaceae, the other containing taxa within the Phormidiaceae. The two lineages were confirmed in an analysis of the 16S–23S internal transcribed spacer (ITS) region sequences and secondary structures. The type species for Microcoleus is M. vaginatus Gomont, and this taxon belongs in the Oscillatoriaceae. Consequently, Microcoleus taxa in the Phormidiaceae must be placed in separate genera, and we propose the new genus Coleofasciculus to contain marine taxa currently placed in Microcoleus. The type species for Coleofasciculus is the well‐studied and widespread marine mat‐forming species Microcoleus chthonoplastes (Mert.) Zanardini ex Gomont. Other characters separating the two families include type of cell division and thylakoid structure.  相似文献   

5.
6.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

7.
Systematics of the red algal order Rhodymeniales was investigated using combined large‐subunit nuclear ribosomal DNA (LSU) and elongation factor 2 (EF2) analyses. These data were subjected to distance, parsimony, and Bayesian analyses, and the resulting phylogenies were largely congruent with previously published SSU results in that the four currently recognized rhodymenialean families (Champiaceae, Faucheaceae, Lomentariaceae, and Rhodymeniaceae) were resolved as monophyletic lineages (with the exception of Coelothrix, which is here transferred to the Champiaceae from the Rhodymeniaceae). In addition, taxa presently considered as incertae sedis consisted of two lineages (Fryeella lineage and Hymenocladia lineage). Based on these results, two new families are proposed: (i) the Fryeellaceae fam. nov. to accommodate the genera Fryeella, Hymenocladiopsis, and a new taxon from Tasmania, Australia; and (ii) the Hymenocladiaceae fam. nov., to accommodate Asteromenia, Hymenocladia, and Erythrymenia. In addition to resolving familial relationships, these analyses resolved some novel interspecific affinities, and we propose a new genus, Neogastroclonium gen. nov., for Gastroclonium subarticulatum, a species that differs significantly in both morphology and molecular data from genuine species of Gastroclonium. Relationships among additional faucheacean and lomentariacean taxa were investigated using LSU data only, and these results are discussed. The familial classification of the Rhodymeniales proposed herein is discussed in light of vegetative and reproductive anatomy, most notably the ontogeny of the tetrasporangia.  相似文献   

8.
We investigate an organism that closely resembles the nonphotosynthetic dinoflagellate “Gymnodinium elongatum” Hope 1954 using EM and molecular methods. Cells are 20–35 μm long, 10 μm wide, biconical, transparent, and have a faint broad girdle. Thecal plates are thin but present (plate formula Po Pi CP 3′ 1–2A 5″ 3C 6S 4? 3″″). With the exception of one feature, the presence of three antapical plates, the amphiesmal arrangement of this species is consistent with that of the order Peridiniales, family Podolampaceae; it is not at all consistent with the characteristics of the genus Gymnodinium. On the basis of these ultrastructural findings, we establish a new genus, Lessardia, and a new species, Lessardia elongata Saldarriaga et Taylor. Molecular phylogenetic analyses were performed using the small subunit rRNA genes of L. elongata as well as Roscoffia capitata, a member of a genus of uncertain systematic position that has been postulated to be related to the Podolampaceae. These analyses place Lessardia and Roscoffia as sister lineages within the so‐called GPP complex. Thecal plate arrangements led us to expand the family Podolampaceae to include the genus Lessardia and, in combination with new molecular results, to propose a close relationship between the Podolampaceae and Roscoffia. Within this lineage, Lessardia and Roscoffia appear to have retained a number of ancestral characters: Roscoffia still has a well‐developed cingulum, a feature absent in all members of the Podolampaceae, and Lessardia has more than one antapical plate, a character reminiscent of some members of the family Protoperidiniaceae.  相似文献   

9.
The diversity of eukaryotic microorganisms is far from fully described, as indicated by the vast number of unassigned genotypes retrieved by environmental sequencing or metagenomics. We isolated several strains of unicellular green algae from algal biofilms growing on tree bark in a Southeast Asian tropical rainforest and determined them to be relatives of an unidentified lineage of environmental 18S rDNA sequences, thus uncovering its cellular identity. Light, confocal, and electron microscope observations and sequencing the 18S rRNA gene revealed that the strains represent two different species within an apparently new genus, described here as Jenufa gen. nov. Both species formed minute coccoid cells with an irregular globular outline, a smooth cell wall, and a single parietal chloroplast without a pyrenoid. The two species, described herein as J. perforata and J. minuta, differed in chloroplast morphology and cell wall structure. Phylogenetic analyses of 18S rRNA gene sequences showed a firm relationship between the two species and placed the Jenufa lineage in an unresolved position within the CS clade (Chlamydomonadales + Sphaeropleales) of the class Chlorophyceae, although possible affinities to the genus Golenkinia were suggested both by maximum‐likelihood (ML) and Bayesian methods. Furthermore, two almost identical environmental 18S rDNA sequences from an endolithic microbial community occurring in dolomite rock in the central Alps turned out to be specifically related to, yet apparently distinct from, the sequence of J. minuta, indicating the existence of an undescribed Jenufa species occurring in the temperate zone.  相似文献   

10.
Chaetonotidae is the most diverse and widely distributed family of the order Chaetonotida (Gastrotricha) and includes both marine and freshwater species. Although the family is regarded as a sister taxon to the exclusively marine Xenotrichulidae, the type of environment, marine or freshwater, where Chaetonotidae originated is still not known. Here, we reconstructed the phylogeny of the family based on molecular sequence data and mapped both morphological and ecological characters to determine the ancestral environment of the first members of the family. Our results revealed that the freshwater genus Bifidochaetus is the earliest branching lineage in the paraphyletic Chaetonotidae (encompassing Dasydytidae and Neogosseidae). Moreover, we reconstructed Lepidochaetus-Cephalionotus clade as a monophyletic sister group to the remaining chaetonotids, which supports Kisielewski's morphological based hypothesis concerning undifferentiated type of body scales as a most primary character in Chaetonotidae. We also found that reversals to marine habitats occurred independently in different Chaetonotidae lineages, thus marine species in the genera Heterolepidoderma, Halichaetonotus, Aspidiophorus and subgenera Chaetonotus (Schizochaetonotus) or Chaetonotus (Marinochaetus) should be assumed as having secondarily invaded the marine environment. Character mapping revealed a series of synapomorphies that define the clade that includes Chaetonotidae (with Dasydytidae and Neogosseidae), the most important of which may be those linked to reproduction.  相似文献   

11.
Accurately defining species boundaries in the green algae (Chlorophyta) is integral for studies of biodiversity and conservation, water‐quality assessments, and the use of particular species as paleoindicators. Recent molecular phylogenetic and SEM analyses of the family Hydrodictyaceae (Chlorophyta) resolved three phylogenetic lineages of isolates with the Pediastrum duplex Meyen 1829 phenotype. The present study employed analyses of cell shape and cell wall ultrastructure to determine if the three lineages possessing the P. duplex morphotype were distinguishable. Only one of the groups, containing isolates with the P. duplex var. gracillimum West et G. S. West phenotype, was shown to be morphologically distinct from the other two P. duplex groups. The erection of a new genus, Lacunastrum, is proposed to recognize this group as a separate taxon.  相似文献   

12.
13.
A new species of the dinoflagellate genus Cachonina, C. illdefina sp. nov., was isolated from a red tide off El Capitan State Park, Santa Barbara County, California, in October 1973. The organism is light yellowgreen in color with deeply incised girdle and sulcal grooves. Electron microscopy of the organism, revealed a typical dinokaryotic nucleus. The chloroplasts of the organism are connected, and often contain microtubule-like elements, 25 nm diam. The pyrenoids are characterized as excluding chloroplast thylakoids and ribosomes, although containing an amorphous matrix and numerous tubular invaginations from the cytoplasm. The pyrenoids become detached from the chloroplasts and degenerate into small vesicles. C. illdefina is not bioluminescent.  相似文献   

14.
Two new species of Gracilariopsis from the Indian Ocean are proposed—Gracilariopsis (Gp.) mclachlanii Buriyo, Bellorin et M. C. Oliveira sp. nov. from Tanzania and Gracilariopsis persica Bellorin, Sohrabipour et E. C. Oliveira sp. nov. from Iran—based on morphology and DNA sequence data (rbcL gene and SSU rDNA). Both species fit the typical features of Gracilariopsis: axes cylindrical throughout, freely and loosely ramified up to four orders, with an abrupt transition in cell size from medulla to cortex, cystocarps lacking tubular nutritive cells and superficial spermatangia. Nucleotide sequence comparisons of rbcL and SSU rDNA placed both species into the Gracilariopsis clade as distinct species from all the accepted species for this genus, forming a deeply divergent lineage together with some species from the Pacific. The new species are very difficult to distinguish on morphological grounds from other species of Gracilariopsis, stressing the importance of homologous molecular marker comparisons for the species recognition in this character‐poor genus.  相似文献   

15.
On the basis of morphological (light and electron microscopy) as well molecular data, we show that the widely distributed freshwater dinoflagellate presently known as Peridiniopsis berolinensis is a member of the family Pfiesteriaceae, an otherwise marine and estuarine family of dinoflagellates. P. berolinensis is a close relative of the marine species, which it resembles in morphology, mode of swimming, food‐uptake mechanism, and partial LSU rRNA sequences. It differs from all known genera of the family in plate tabulation. P. berolinensis is only distantly related to the type species of Peridiniopsis, P. borgei, and is therefore transferred to the new genus Tyrannodinium as T. berolinense comb. nov. T. berolinense is a very common freshwater flagellate that feeds vigorously on other protists and is able to consume injured metazoans much larger than itself. Production of toxins has not been reported.  相似文献   

16.
On the basis of LM, we isolated strains of two species of fusiform green flagellates that could be assigned to former Chlorogonium (Cg.) Ehrenb. One species, “Cg.”heimii Bourr., lacked a pyrenoid in its vegetative cells and required organic compounds for growth. The other was similar to Cg. elongatum (P. A. Dang.) Francé and “Cg.”acus Nayal, but with slightly smaller vegetative cells. Their molecular phylogeny was also studied based on combined 18S rRNA, RUBISCO LSU (rbcL), and P700 chl a‐apoprotein A2 (psaB) gene sequences. Both species were separated from Chlorogonium emend., Gungnir Nakada and Rusalka Nakada, which were formerly assigned to Chlorogonium. They were accordingly assigned to new genera, Tabris Nakada gen. nov. and Hamakko (Hk.) Nakada gen. nov. as T. heimii (Bourr.) Nakada comb. nov. and Hk. caudatus Nakada sp. nov., respectively. Tabris is differentiated from other genera of fusiform green flagellates by its vegetative cells, which only have two apical contractile vacuoles and lack a pyrenoid in the chloroplast. Hamakko, on the other hand, is distinguishable by the fact that its pyrenoids in vegetative cells are penetrated by flattened thylakoid lamellae.  相似文献   

17.
The freshwater green alga Coleochaete Breb. (Coleochaetaceae; Coleochaetales) is a key streptophyte genus and is important to the understanding of the evolutionary origin of embryophytes (land plants). To date only a few species have been available from public culture collections. To facilitate research on this genus we have isolated 17 previously uncultured species of Coloechaete from material collected in the United States, Puerto Rico, and the Dominican Republic. Sequences for the genes rbcL and atpB were determined for these new isolates of Coleochaete (and for existing cultures) and combined with sequences from representative other streptophytes. Phylogenetic analyses indicate that Coleochaete, along with Chaetosphaeridium and Chara, are closely related to embryophytes and constitute a ‘higher streptophyte’ clade. At least four well‐supported lineages exist within Coleochaete. Characteristic growth forms have been identified for these four lineages, with important characters including aspects of thallus establishment, thallus habit, zygote development and hair sheath position. These data provide an improved understanding of species diversity and character evolution in the genus Coleochaete, and facilitate examination of hypotheses concerning character evolution in the streptophytes.  相似文献   

18.
Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear‐encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper‐variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the “Siphonocladales” clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra‐ and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species.  相似文献   

19.
Genetic differences among ten strains of chroococcoid cyanobacteria (Synechococcus spp.) were identified by Southern blot hybridization. Data on shared number of restriction fragment length polymorphisms were used to identify the pattern and degree of genetic relatedness among the strains by two different methods of phylogenetic analysis. All the marine strains in the study contained phycoerythrin (PE) and cross-reacted with antisera directed against strain WH7803. Five contained a PE composed of phycourobilin (PUB) and phycoerythrobilin (PEB) Chromophores, and three contained a PE composed of only PEB chromophores. Two freshwater strains which do not contain PE and do not cross-react with the anti-WH7803 serum were included in the study for comparison. Dollo Parsimony analysis and cluster analysis showed that the WH7803 serogroup includes at least four widely separated genetic lineages. Strains within each lineages were closely related but the differences between lineages were as great as those between any of the marine lineages and the freshwater lineage. Strains cultured simultaneously from the same water mass were associated with different lineages. Thus, we conclude that natural assemblages of marine. Synechococcus are, at least occasionally, composed of individuals as genetically distinct from each other as members of different species or genera in other taxa.  相似文献   

20.
A secondarily formed reticulum of cells that encloses axial strands and a carposporophyte that is almost entirely converted to sporangia are the diagnostic features of a new genus, Reticulocaulis (Naccariaceae, Nemaliales), with R. mucosissimus as the type species. A new species of Naccaria, N. hawaiiana permits close comparison with the new genus and other previously described species of Naccaria. Until now, no Naccariaceae were known in the Pacific, and these new taxa are part of the sketchily known subtidal marine flora of Hawaii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号