首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the pollen size in 5 species of Taraxacum sect. Palustria at three levels of ploidy: 2n = 3x = 24 (T. paucilobum), 2n = 4x = 32 (T. vindobonense, T. trilobifolium), 2n = 5x = 40 (T. mendax) and one taxon of unknown number of chromosomes 2n = ? (T. portentosum) are presented in this paper. Obtained results indicate a lack of distinct positive correlation between the pollen size and ploidy in the studied group of plants. Distinct relationship was, however, found between ploidy and the range of pollen size and shape variability. Most variable were the pollen grains of triploid T. paucilobum and the least — those in pentaploid T. mendax. Ranges of pollen variability in tetraploid T. trilobifolium and T. vindobonense and in T. portentosum of unknown number of chromosomes showed intermediate values.  相似文献   

2.
Foreign genetic variability, which is represented by different wild-growing relatives of wheat such as Ae. umbellulata (UU, 2n = 14), Ae. cylindrica (CCDD, 2n = 28), Ae. tauschii (DD, 2n = 14), Ae. ventricosa (DDUnUn, 2n = 28), Ae. variabilis (UUSS, 2n = 28), and T. palmovae (AADD, 2n = 28) is used in interspecies crossings with the wheat cultivar T. aestivum for the purpose of transferring exotic Gli/Glu alleles into the genome of the crop. As a result, a series of new exotic Gli/Glu alleles is introgressed into the genome of wheat cultivar. An essential negative as well as positive influence of the wild exotic alleles on the baking quality indicators of the flour and the consistency of the wheat endosperm is discovered in the course of the study. The new genetic material with the improved grain quality indicators is recommended for use in wheat selection.  相似文献   

3.
Cytoembryological research of the ovules in experiments with interspecific hybridization of Pinus sibirica (pollination be the pollen of P. koraiensis, P. armandii, P. parviflora, P. strobus, P. hokkaidensis, P. wallichiana, P. monticola, and P. сembra) revealed that the development of megagametophytes occurred in them by the usual scenario and resulted in the formation of mature archegonia. Pollen successfully germinated on the nucellus of ovules. However, disturbances were observed in the process of male gametophyte development, and pollen tubes on the nucellus were not visible by the period of archegonia maturation. Fertilization was usually absent. The development of embryonic channel is determined by egg cell maturity. The only exception was the variant of the controlled pollination of Pinus sibirica × P. сembra, in which the embryo has been formed.  相似文献   

4.
Pollen ultrastructure has been studied in two relict and rare species of the genus Aristolochia, A. contorta Bunge and A. manshuriensis Kom. (Aristolochiaceae). Both species have inaperturate, spheroidal, sometimes distally monocolpate or distally bicolpate pollen grains. The equatorial and polar axes of pollen grain in A. manshuriensis are 48.5 and 44.0 μm, respectively. The percentage of defective pollen grains in A. manshuriensis is 3.4%. The fossulate, perforated exine is up to 2.3 μm in thickness; the sexine and the nexine are almost equal in thickness. In A. contorta, the equatorial axis of pollen grain is 36.6 μm: the defectiveness percentage, 24.5%. The exine is verrucate, up to 0.3 μm in thickness, while the sexine is two to three times thicker than the nexine. The pollen germination experiments have shown that pollen of A. manshuriensis, in contrast to A. contorta, can germinate in 10–20% sucrose at 22°С. These data and the high percentage of pollen defectiveness in A. contorta indicate that the androecium function in this species is reduced. The reduction of the androecium function is evidenced by a small amount of pollen grains in anthers or empty anthers and a high percentage of defective pollen grains.  相似文献   

5.
The inheritance of two taxonomically important characters was studied in hexaploid wheat species (2n = 6x = 42). The monogenic control of spherical grain was demonstrated for Triticum antiquorum Heer ex Udacz. The recessive gene controlling spherical grain in this species was localized to chromosome 3D by monosomic genetic analysis and was shown to be allelic to the s gene determining the same character in the endemic Indian species T. sphaerococcum Perciv. The T. antiquorum and T. sphaerococcum dominant genes controlling compact ears proved to be nonallelic to the corresponding T. compactum Host gene and were designated as C2. Problems of phylogeny and classification of hexaploid wheats are discussed.  相似文献   

6.
Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.  相似文献   

7.

Background

In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development.

Results

We analyzed the expression pattern of the proline biosynthetic genes PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 & 2 (P5CS1 & 2) in Arabidopsis anthers and both isoforms were strongly expressed in developing microspores and pollen grains but only inconsistently in surrounding sporophytic tissues. We introduced in a p5cs1/p5cs1 p5cs2/P5CS2 mutant background an additional copy of P5CS2 under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, the tapetum-specific LIPID TRANSFER PROTEIN 12 (Ltp12) promoter or the pollen-specific At5g17340 promoter to determine in which site proline biosynthesis can restore the fertility of proline-deficient microspores. The specificity of these promoters was confirmed by β-glucuronidase (GUS) analysis, and by direct proline measurement in pollen grains and stage-9/10 anthers. Expression of P5CS2 under control of the At5g17340 promoter fully rescued proline content and normal morphology and fertility of mutant pollen. In contrast, expression of P5CS2 driven by either the Ltp12 or CaMV35S promoter caused only partial restoration of pollen development with little effect on pollen fertility.

Conclusions

Overall, our results indicate that proline transport is not able to fulfill the demand of the cells of the male germ line. Pollen development and fertility depend on local proline biosynthesis during late stages of microspore development and in mature pollen grains.
  相似文献   

8.

Key message

Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome.

Abstract

Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat–Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat–Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat–Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
  相似文献   

9.
Meiosis in anthers and mitosis in somatic cells were studied in reciprocal F1 hybrids of the accession VIR320, which belonged to wild Pisum sativum ssp. elatius (Bieb.) Schmal., and the laboratory line Sprint-1. When VIR320 was used as a maternal form, the hybrids displayed nuclear-cytoplasmic conflict, which caused chlorophyll defects and meiotic abnormalities. One or two chromosomes lagged in the equatorial region during chromosome segregation to the poles, distorting cytokinesis and yielding abnormal microspores. Chlorophyll defects were not observed, and meiotic abnormalities were far less frequent in reciprocal hybrids and in the case of an abnormal paternal inheritance of plastids from Sprint-1. Mitosis lacked overt abnormalities in all of the hybrids.  相似文献   

10.
The tpd1 (from tobacco pollen development 1) insertion mutant of tobacco (Nicotiana tabacum L., cv. Samsun) with extended flowering period was investigated in detail in the course of plant development, and the inheritance of the mutant phenotype was established. The wild-type and mutant plants did not differ in basic developmental indices until the floral transition; later they diverged in the characteristics of male reproductive organs, particularly in anther development and pollen maturation. The pollen of tpd1 plants was underdeveloped and sterile, resulting in a characteristic seedless phenotype with extended flowering period. When mutant flowers were pollinated with wild-type pollen, the tpd1 phenotype was maintained in at least two seed generations, indicating that this trait was heritable. The tpd1 phenotype was closely linked with kanamycin resistance; it follows that the developmental anomalies observed in our experiments immediately depended on the vector DNA insert. Our data presume that tpd1 is a rare dominant monogenic mutation with a narrowly directed physiological manifestation. A model is presented to describe the effect of TPD1. The tpd1 mutant would help identify and clone the new TPD1 gene crucial for viable pollen development.  相似文献   

11.
Extensive research has found that nighttime transpiration (E n) is positively correlated to the vapour pressure deficit (VPD), that suggested E n was highest during the night under high temperatures and low humidity along with high soil water availability, typically for the riparian forest in the extreme arid region of China. This study used the heat ratio method to measure sap velocity (V s) for mature and saplings Populus euphratica Oliv., and then E n was conservatively calculated as total nocturnal sap flow (F s, the product of V s and sapwood area A s) between 01:00 to 06:00. A gas exchange system was used to measure the leaf transpiration rate (T r) and stomatal conductance (g s) of saplings. For mature trees, nighttime V s was extensive and logarithmic correlated to VPD (similar to daytime). For saplings, g s and T r was extensive in different months, and also a strong logarithmic relationship was found between V s and VPD for both daytime and nighttime periods. Both of stem sap flow and leaf gas exchange suggusted the occurrence of E n, whether mature or sapling trees. E n contribution to daily transpiration (E d) was high just as expected for P. euphratica, which was confirmed by proportional E n to E d (E n/E d) means taken in 2012 (24.99%) and 2013 (34.08%). Compared to mature trees, E n/E d of saplings in 2013 was lower with means of 12.06%, that supported further by the shorter duration times and less T r,n (16.64%) and g s,n (26.45%) of leaf, suggesting that E n magnitude is associated to individual the tree size, that effect to stored water of individual trees, although this hypothesis requires further research.  相似文献   

12.
Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelni?a culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.  相似文献   

13.

Key message

A strong, stable and root-specific expression system was developed from a rice root-specific GLYCINE - RICH PROTEIN 7 promoter for use as an enabling technology for genetic manipulation of wheat root traits.

Abstract

Root systems play an important role in wheat productivity. Genetic manipulation of wheat root traits often requires a root-specific or root-predominant expression system as an essential enabling technology. In this study, we investigated promoters from rice root-specific or root-predominant expressed genes for development of a root expression system in bread wheat. Transient expression analysis using a GREEN FLUORESCENT PROTEIN (GFP) reporter gene driven by rice promoters identified six promoters that were strongly expressed in wheat roots. Extensive organ specificity analysis of three rice promoters in transgenic wheat revealed that the promoter of rice GLYCINE-RICH PROTEIN 7 (OsGRP7) gene conferred a root-specific expression pattern in wheat. Strong GFP fluorescence in the seminal and branch roots of wheat expressing GFP reporter driven by the OsGRP7 promoter was detected in epidermal, cortical and endodermal cells in mature parts of the root. The GFP reporter driven by the promoter of rice METALLOTHIONEIN-LIKE PROTEIN 1 (OsMTL1) gene was mainly expressed in the roots with essentially no expression in the leaf, stem or seed. However, it was also expressed in floral organs including glume, lemma, palea and awn. In contrast, strong expression of rice RCg2 promoter-driven GFP was found in many tissues. The GFP expression driven by these three rice promoters was stable in transgenic wheat plants through three generations (T1–T3) examined. These data suggest that the OsGRP7 promoter can provide a strong, stable and root-specific expression system for use as an enabling technology for genetic manipulation of wheat root traits.
  相似文献   

14.

Key message

We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome.

Abstract

Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC1 to BC3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B1?8), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38–30.00%) than the other four (B3, B6, B7, B8) (5.04–8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.
  相似文献   

15.
The opposite modes of chloroplast DNA (cpDNA) inheritance were found to operate in the reciprocal crossings of Scots pine (Pinus sylvestris L.) and mountain dwarf pine (Pinus mugo Turra). The crossings were found to be partially compatible. In P. sylvestris × P. mugo crossing, the paternal transmission of cpDNA to the offspring takes place corroborating the generally acknowledged concept of the paternal cpDNA inheritance in gymnosperms. On the contrary, in P. mugo × P. sylvestris crossing the seed progeny exhibited P. mugo haplotype of the mother tree deviating conspicuously from the above concept. In the open pollination offspring of the putatively hybrid individuals of the Scots and mountain dwarf pines, a biparental inheritance of cpDNA was revealed in mother tree with P. mugo haplotype indicating a loosened control of the maternal inheritance of cpDNA in the putative hybrids. Implications and impacts of this finding for further studies are discussed.  相似文献   

16.
Previous studies showed that geraniol could be an upstream limiting factor in the monoterpenoid pathway towards the production of terpenoid indole alkaloid (TIA) in Catharanthus roseus cells and hairy root cultures. This shortage in precursor availability could be due to (1) limited expression of the plastidial geraniol synthase resulted in a low activity of the enzyme to catalyze the conversion of geranyl diphosphate to geraniol; or (2) the limitation of geraniol transport from plastids to cytosol. Therefore, in this study, C. roseus’s geraniol synthase (CrGES) gene was overexpressed in either plastids or cytosol of a non-TIA producing C. roseus cell line. The expression of CrGES in the plastids or cytosol was confirmed and the constitutive transformation lines were successfully established. A targeted metabolite analysis using HPLC shows that the transformed cell lines did not produce TIA or iridoid precursors unless elicited with jasmonic acid, as their parent cell line. This indicates a requirement for expression of additional, inducible pathway genes to reach production of TIA in this cell line. Interestingly, further analysis using NMR-based metabolomics reveals that the overexpression of CrGES impacts primary metabolism differently if expressed in the plastids or cytosol. The levels of valine, leucine, and some metabolites derived from the shikimate pathway, i.e. phenylalanine and tyrosine were significantly higher in the plastidial- but lower in the cytosolic-CrGES overexpressing cell lines. This result shows that overexpression of CrGES in the plastids or cytosol caused alteration of primary metabolism that associated to the plant cell growth and development. A comprehensive omics analysis is necessary to reveal the full effect of metabolic engineering.  相似文献   

17.
Genetic analysis of the inheritance of mutation ps in sugar beet was conducted. This mutation causes the meiotic abnormalities leading to the development of diploid pollen grains and influences several other morphological traits, namely, annual or biennial habit, stem color, and aggregation of pollen grains into tetrads, which are controlled by the genes B, Stc, and ap, respectively. The literature data on the linkage of genes B and Stc were confirmed; the obtained recombination coefficient between these genes amounts to 15.0 ± 3.6%. It was demonstrated that gene ap was inherited independently of genes B and Stc. Statistical analysis of the data shows that the mutation ps is recessive and is inherited independently of the mutation ap but in a linked manner with the traits development habit and stem color. The conclusion is made that a gene with a strong phenotypic effect that determines the development of the phenotype characteristic of mutation ps is located in the first linkage group near genes B and Stc.  相似文献   

18.

Key message

The presence of homologous subgenomes inhibited unreduced gamete formation in wheat × Aegilops interspecific hybrids. Unreduced gamete rates were under the control of the wheat nuclear genome.

Abstract

Production of unreduced gametes is common among interspecific hybrids, and may be affected by parental genotypes and genomic similarity. In the present study, five cultivars of Triticum aestivum and two tetraploid Aegilops species (i.e. Ae. triuncialis and Ae. cylindrica) were reciprocally crossed to produce 20 interspecific hybrid combinations. These hybrids comprised two different types: T. aestivum × Aegilops triuncialis; 2n = ABDUtCt (which lack a common subgenome) and T. aestivum × Ae. cylindrica; 2n = ABDDcCc (which share a common subgenome). The frequency of unreduced gametes in F1 hybrids was estimated in sporads from the frequency of dyads, and the frequency of viable pollen, germinated pollen and seed set were recorded. Different meiotic abnormalities recorded in the hybrids included precocious chromosome migration to the poles at metaphase I and II, laggards in anaphase I and II, micronuclei and chromosome stickiness, failure in cell wall formation, premature cytokinesis and microspore fusion. The mean frequency of restitution meiosis was 10.1 %, and the mean frequency of unreduced viable pollen was 4.84 % in T. aestivum × Ae. triuncialis hybrids. By contrast, in T. aestivum × Ae. cylindrica hybrids no meiotic restitution was observed, and a low rate of viable gametes (0.3 %) was recorded. This study present evidence that high levels of homologous pairing between the D and Dc subgenomes may interfere with meiotic restitution and the formation of unreduced gametes. Variation in unreduced gamete production was also observed between T. aestivum × Ae. triuncialis hybrid plants, suggesting genetic control of this trait.
  相似文献   

19.

Key message

Hexaploid bread wheat is not readily amenable to traditional mutagenesis approaches. In this study, we show efficient utilization of CRISPR-Cas system and Next Generation Sequencing for mutant analysis in wheat.

Abstract

Identification and manipulation of male fertility genes in hexaploid bread wheat is important for understanding the molecular basis of pollen development and to obtain novel sources of nuclear genetic male sterility (NGMS). The maize Male sterile 45 (Ms45) gene encodes a strictosidine synthase-like enzyme and has been shown to be required for male fertility. To investigate the role of Ms45 gene in wheat, mutations in the A, B and D homeologs were produced using CRISPR-Cas9. A variety of mutations in the three homeologs were recovered, including a plant from two different genotypes each with mutations in all three homeologs. Genetic analysis of the mutations demonstrated that all three wheat Ms45 homeologs contribute to male fertility and that triple homozygous mutants are required to abort pollen development and achieve male sterility. Further, it was demonstrated that a wild-type copy of Ms45 gene from rice was able to restore fertility to these wheat mutant plants. Taken together, these observations provide insights into the conservation of MS45 function in a polyploid species. Ms45 based NGMS can be potentially utilized for a Seed Production Technology (SPT)-like hybrid seed production system in wheat.
  相似文献   

20.
In the S-RNase-based self-incompatibility system, subcellular events occurring in the apical region of incompatible pollen tubes during the pollen rejection process are poorly understood. F-actin dynamics and endomembrane trafficking are crucial for polar growth, which is temporally and spatially controlled in the tip region of pollen tubes. Thus, we developed a simple in vitro assay to study the changes in the F-actin cytoskeleton and the endomembrane system at the apical region of incompatible pollen tubes in Nicotiana alata. Growth but not germination of pollen tubes of S c10 -, S 70 -, and S 75 -haplotypes was selectively inhibited by style extracts carrying the same haplotypes. Pollen F-actin cytoskeleton and endomembrane system, visualized by fluorescent markers, were normal during the initial 60 min of pollen culture in the presence of compatible and incompatible style extracts. Additional culture resulted in complete growth arrest and critical alterations in the integrity of the F-actin cytoskeleton and the endomembrane system of incompatible pollen tubes. The F-actin ring and the V-shaped zone disappeared from the apical region, while distorted F-actin cables and progressive formation of membrane aggregates evolved in the subapical region and the shank. The vacuolar network of incompatible pollen tubes invaded the tip region, but vacuolar membrane integrity remained mostly unaffected. The polar growth machinery of incompatible pollen tubes was uncoupled, as evidenced by the severe disruption of colocalization between the F-actin cytoskeleton and the endomembrane compartments. A model of pollen rejection integrating the main subcellular events occurring in incompatible pollen is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号