首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Syntheses of (E)-3,4-dideoxy-erythro-, (Z)-3,4-dideoxy-D-threo- and (E)-3,4-dideoxy-D-threo-hex-3-enitols are described. The action of potassium selenocyanate on 1,2:5,6-di-O-isopropylidene-D-mannitol 3,4-di-p-toluenesulfonate has been reexamined. Epoxidation of (E)-3,4-dideoxy-1,2:5,6-di-O-isopropylidene-D-threo-hex-3-enitol affords 3,4-anhydro-1,2:5,6-di-O-isopropylidene-D-mannitol and -D-iditol in the approximate proportions of 3:1. The configurations of the two epoxides were assigned on the basis of the reaction of the latter compound with sodium methoxide to give 1,2:5,6-di-O-isopropylidene-4-O-methyl-D-altritol.  相似文献   

2.
1,2:5,6-Di-O-isopropylidene-α-D-allofuranose (1), 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2), and 1,2.3,4-di-O-isopropylidene-α-D-galactopyranose (3) have been separately treated in pyridine solution with trifluoromethanesulphonic anhydride, 2,2,2-trifluoroethanesulphonyl chloride, and pentaflucrobenzenesulphonyl chloride. Both 1 and 2 afforded the anticipated sulphonic esters. Although 3 also gave the 2,2,2-trifluoroethanesulphonic and pentafluorobenzenesulphonic esters, the reaction with trifluoromethanesulphonic anhydride yielded 6-deoxy-1,2:3,4-di-O isopropylidene-6-pyridino-α-D-galactopyranose trifluoromethanesulphonate.  相似文献   

3.
Protected sugar derivatives having one free hydroxyl group may be deoxygenated at the alcoholic position by ultraviolet irradiation of the corresponding dimethylthiocarbamic esters: a concomitant process leads also to the original alcohol. Thus, on photolysis, the 6-dimethylthiocarbamate (1) or 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (3) gives 6-deoxy- 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (2) together with 3. Likewise, the 4-dimethylthiocarbamate (6) of 1,6-anhydro-2.3-O-isopropylidene-β-D-mannopyranose (8) gives a mixture of the 4-deoxy derivative 7 and the alcohol 8. 3-Deoxy-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranose (10) was obtained by irradiation of 3-O-(dimethylthiocarbamoyl)-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (9), and was accompanied by 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (11). The 3-deoxy-3-iodo analog (14) of 11 underwent conversion into 10 by photolysis, and the deoxy sugar 10 was also prepared from 3,3'-dithiobis(1,2:5,6-di-O-isopropylidene-α-D--glucofuranose) (12) by the action of Raney nickel. Photolysis of the 2-dimethylthiocarbamate (16) of methyl 3,4-O-isopropylidene-β-L-arabinopyranoside (18) gave the 2-deoxy derivative (17), together with the parent alcohol 18, and the same pair of products was obtained by the action of tributylstannane on the 2-(methylthio)thiocarbonyl derivative (19) of 18, although the dimethylthiocarbamate 16 was unreactive toward tributylstannane.  相似文献   

4.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

5.
3,6-Anhydro-α-D-galactopyranose 1,2-(methyl orthoacetate) and its 4-acetate were synthesized from 2,3,4-tri-O-acetyl-6-O-tosyl-α-D-galactopyranosyl bromide. Condensation of the above-mentioned, acetylated ortho ester with 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose gave 6-O-(2,4-di-O-acetyl-3,6-anhydro-β-D-galactopyranosyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose. The same disaccharide derivative was synthesised from 6-O-β-D-galactopyranosyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by mono-O-tosylation followed by treatment with alkali and acetylation.  相似文献   

6.
Condensation of 1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranos-3-ulose (1) with diethyl cyanomethylphosphonate afforded a mixture of the cis- and trans-3-cyanomethylene-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranoses (2) in 80% yield. Catalytic reduction of 2 yielded 3-C-cyanomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (4) exclusively. Palladium and hydrogen was found to rearrange the exocyclic double bond of 2 to give the 3,4-ene (3). Catalytic reduction of 3 also proceeded stereospecifically to yield 4. Selective hydrolysis of 4 yielded the diol 5, which was cleaved with periodate and the product reduced with sodium borohydride to afford crystalline 3-C-cyanomethyl-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (6) in 87% yield. Catalytic reduction of the latter with hydrogen and platinum in the presence of acetic anhydride and ethanol gave the crystalline l-amino sugar, 3-C-(2-acetamidoethyl)-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (7) in 92% yield.  相似文献   

7.
d-Xylose, d-arabinose, and d-ribose were each treated with 2,2-dimethoxypropane in N,N-dimethylformamide containing a trace of p-toluenesulfonic acid. d-Xylose gave 3,5-O-isopropylidene-d-xylofuranose, 1,2:3,5-di-O-isopropylidene-α-d-xylofuranose, 1,2-O-isopropylidene-α-d-xylopyranose, and two acyclic di-O-isopropylidene derivatives. d-Arabinose gave the known 3,4-O-isopropylidene-β-d-arabinopyranose and 1,2:3,4-di-O-isopropylidene-β-d-arabinopyranose. d-Ribose gave 2,3-O-isopropylidene-d-ribofuranose almost exclusively.  相似文献   

8.
Isolation of 1,2:3,4-di-O-isopropylidene-α-d-glucoseptanose and 2,3:4,5-di-O-isopropylidene-β-d-glucoseptanose from the mother-liquors from commercial scale preparation of 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose is described.  相似文献   

9.
Stereospecific hydroxylation of (E)-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-(methoxycarbonylmethylene)-α-D-xylo-hexofuranose (2) with potassium permanganate in pyridine afforded pure 3-C-[(R)-hydroxy(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-galactofuranose (5) in 55% yield. Mesylation of the diol 5 in pyridine yielded the monomethanesulfonate 6 and, in addition, a small proportion of an unsaturated, exocyclic sulfonate 7. Treatment of 6 with sodium azide in N-N-dimethylformamide and reduction of the resultant α-azido ester 9 afforded methyl D- (and L-) 2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycinate, (11a) and (10a), respectively. Basic hydrolysis of 11a and 10a yielded D- and L-2-(1,2:5,6-di-O-isopropylidene-α-D-galactofuranos-3-yl)glycine (11b) and (10b), respectively. The structures of the glycosyl α-amino acids were correlated with that of L-alanine by circular dichroism.  相似文献   

10.
Methyl 4-amino-3,4-dideoxy-β-D-ribo-hexopyranoside (17) and its uronic acid (19) were synthesized via a series of reactions starting from 1,2:5,6-di-O-isopropylidene-3-O-tosyl-α-D-glucofuranose. A method suitable for the large scale preparation of 3,4-dideoxy- 1,2:5,6-di-O-isopropylidene-α-D-erythro-hex-3-enofuranose(2) was devised.  相似文献   

11.
The following ethers, of potential value for the synthesis of α-D-galactopyranosides, were prepared: 2-O-benzyl-D-galactose, 2,6-di-O-benzyl-D-galactose, and 2,3-di-O-benzyl-D-galactose. Isopropylidenation of methyl α-D-galactopyranoside in the presence of phosphorus pentaoxide gave its 3,4-, and 4,6-O-isopropylidene derivatives. Treatment of the 3,4-acetal with trityl chloride in pyridine produced the 6-trityl ether, which was benzylated with benzyl chloride and sodium hydride in N,N-dimethylformamide to yield the 2-benzyl ether. Acid hydrolysis of this product gave 2-O-benzyl-D-galactose. Benzylation of methyl 3,4-O-isopropylidene-α-D-galactopyranoside, followed by hydrolysis, gave 2,6-di-O-benzyl-D-galactose. Similarly, 2,3-di-O-benzyl-D-galactose was obtained by acid hydrolysis of methyl 2,3-di-O-benzyl-4,6-O-isopropylidene-α-D-galactopyranoside and of methyl 2,3-di-O-benzyl-4,6-O-benzylidene-β-D-galactopyranoside.  相似文献   

12.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

13.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

14.
Stereospecific hydroxylation of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-trans-and 3-C-cis-(methoxycarbonylmethylene)-α-D-ribo-hexofuranose (2 and 3, respectively), with potassium permanganate in pyridine afforded 3-C-[S- and R-hydroxy-(methoxycarbonyl)methyl]-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, (6 and 7, respectively), in a combined yield, after chromatography, of 43%. Selective formation of monomethanesulfonates (9a and 10a) and p-toluenesulfonates (9b and 10b), followed by treatment with sodium azide and reduction of the azide, afforded the methyl 2-D-(and 2-L-)(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)-glycinates (12a and 13a, respectively). Basic hydrolysis of the latter compounds yielded 2-D- and 2-L-(3-deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranos-3-yl)glycine (12b and 13b, respectively). The structures of the glycosyl amino acids were correlated with that of L-alanine by circular dichroism.  相似文献   

15.
Derivatives of 6-amino-6-deoxy-D-galactose-6-15N have been synthesized by reaction of the 6-deoxy-6-iodo (1) or 6-O-p-tolylsulfonyl derivative of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose with potassium phthalimide-15N. The reaction of 1 also yielded an elimination product, 6-deoxy-1,2:3,4-di-O-isopropylidene-β-L-arabino-hex-5-enopyranose. The structures of the 6-amino-6-deoxy-D-galactose derivatives and their precursors were characterized by proton- and 13C-n.m.r. spectroscopy, with confirmation of the 13C assignments by selective proton decoupling. Selective broadening of the C-1, C-4, C-5, and C-6 resonances of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by low concentrations of cupric ion was observed, and studied by computerized measurements of the 13C linewidths. The application of this broadening to 13C-spectral assignments of amino sugar derivatives is indicated.  相似文献   

16.
Photoamidation of 3-O-acetyl-1,2:5,6-di-O-isopropylidene-α-d-erythro-hex-3-enofuranose (1) afforded 3-O-acetyl-4-C-carbamoyl-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (2) and 3-O-acetyl-3-C-carbamoyl-1,2:5,6-di-O-isopropylidene-d-α-allofuranose (3) in 65 and 26% yields, respectively (based on consumed1). Treatment of2 with 5% hydrochloric acid in methanol yielded the spiro lactone5, which was deacetylated to yield7. Reduction of5 with sodium borohydride afforded 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-gulofuranose (9) in 79% yield. Oxidation of9 with sodium metaperiodate afforded a dialdose that was reduced with sodium borohydride to give 4-C-(hydroxymethyl)-1,2-O-isopropylidene-α-d-erythro-pentofuranose (11) in 88% yield. Treatment of the acetate12, derived from11, with trifluoroacetic acid, followed by acetylation, afforded the branched-chain sugar acetate14. Condensation of the glycosyl halide derived from14 withN6-benzoyl-N6, 9-bis-(trimethylsilyl)adenine yielded an equimolar anomeric mixture of protected nucleosides15 and16 in 40% yield. Treatment of the latter compounds with sodium methoxide in methanol afforded 9-[4-C-(hydroxymethyl)-β-d-erythro-pentofuranosyl]-adenine (17) and the α-d anomer18. The structure of3 was determined by correlation with the known 5,3′-hemiacetal of 3-C-(hydroxymethyl)-1,2-O-isopropylidene-α,α′-d-ribo-pentodialdose (25).  相似文献   

17.
Treatment of 1,2:5,6-di-O-isopropylidene-α-d-ribo- and xylo-hexofuranos-3-uloses with (difluoromethylene)triphenylphosphorane and (chlorofluoromethylene)-triphenylphosphorane gave unsaturated, ramified halogeno sugars in good yield. Treatment of the chlorofluoromethylene derivatives with lithium aluminum hydride gave stereospecifically the corresponding fluoromethylene derivatives with inversion of configuration at the double bond. The configuration was determined by 1h- and 19F-n.m.r. spectrometry.  相似文献   

18.
A 5-stage synthesis of the title compound (11), the first example of a secondary deoxyfluoroketose, is described. The synthesis comprised the following reaction sequence: D-fructose→1,2:4,5-di-O-isopropylidene-β-D-fructopyranose (4)→1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-fructopyranose (3)→ 3,4-anhydro-1,2-O-isopropylidene-β-D-ribo-hexulopyranose (9)→4-deoxy-fluoro-1,2-O-isopropylidene-β-D-xylo-hexulopyranose (11). Fluoride displacement at C-4 in 9 was effected with tetrabutyl-ammonium fluoride in methyl cyanide. Similar treatment of either 3 or 1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-ribo-hexulopyranose (5) failed to yield a fluoro derivative. Compound 5 was prepared by the sequence 4→1,2:4,5-di-O-isopropylidene-β-D-erythro-hexo-2,3-diulopyranose (6)→1,2:4,5-di-O-isopropylidene-β-D-ribo-hexulopyranose (7)→5.  相似文献   

19.
A model study for a synthetic approach to the α,β-unsaturated δ-lactone olguine is reported starting from 1,2:3,4-di-O-isopropylidene-α-d-galacto-hexodialdo-1,5-pyranose by Wittig reaction with (1,3-dioxolan-2-ylmethyl)triphenyl-phosphonium bromide and epoxidation of the resulting olefins. The crystal and molecular structures of the intermediate epoxide 6,7-anhydro-1,2:3,4-di-O-isopropylidene-α-l-erythro-d-galacto-octopyranose have been determined.  相似文献   

20.
Asymmetric reduction of aromatic ketones using chirally modified reagents prepared from sodium borohydride and optically active acids in the presence or absence of 1,2: 5,6-di-O-isopropylidene-α-d-glucofuranose produced the corresponding optically active alcohols with optical yields of 4 ~ 47%. The reagent prepared from sodium borohydride and 1 equivalent of l-malic acid in the presence of 2 equivalents of 1,2: 5,6-di-O-isopropylidene-α-d-gluco-furanose gave the highest yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号