共查询到20条相似文献,搜索用时 15 毫秒
1.
Tung‐Yuan Ho Antonietta Quigg Zoe V. Finkel Allen J. Milligan Kevin Wyman Paul G. Falkowski Franois M. M. Morel 《Journal of phycology》2003,39(6):1145-1159
We analyzed the cellular content of C, N, P, S, K, Mg, Ca, Sr, Fe, Mn, Zn, Cu, Co, Cd, and Mo in 15 marine eukaryotic phytoplankton species in culture representing the major marine phyla. All the organisms were grown under identical culture conditions, in a medium designed to allow rapid growth while minimizing precipitation of iron hydroxide. The cellular concentrations of all metals, phosphorus, and sulfur were determined by high‐resolution inductively coupled plasma mass spectrometry (HR‐ICPMS) and those of carbon and nitrogen by a carbon hydrogen nitrogen analyzer. Accuracy of the HR‐ICPMS method was validated by comparison with data obtained with 55Fe radioactive tracer and by a planktonic reference material. The cellular quotas (normalized to P) of trace metals and major cations in the biomass varied by a factor of about 20 among species (except for Cd, which varied over two orders of magnitude) compared with factors of 5 to 10 for major nutrients. Green algae had generally higher C, N, Fe, Zn, and Cu quotas and lower S, K, Ca, Sr, Mn, Co, and Cd quotas than coccolithophores and diatoms. Co and Cd quotas were also lower in diatoms than in coccolithophores. Although trace element quotas are influenced by a variety of growth conditions, a comparison of our results with published data suggests that the measured compositions reflect chiefly the intrinsic (i.e. genetically encoded) trace element physiology of the individual species. Published field data on the composition of the planktonic biomass fall within the range of laboratory values and are generally close to the approximate extended Redfield formula given by the average stoichiometry of our model species (excluding the hard parts): While clearly this elemental stoichiometry varies between species and, potentially, in response to changes in the chemistry of seawater, it provides a basis for examining how phytoplankton influence the relative distributions of the ensemble of major and trace elements in the ocean. 相似文献
2.
Some classes of marine phytoplankton are believed to be more tolerant of high concentrations of trace metals than others, but the results of experimental tests of this hypothesis are ambiguous. Eleven species of phytoplankton representing five classes were grown in Aquil medium containing Cd concentrations between 10−8 and 10−5 M ([Cd2+ ]= 10−9.85 to 10−6.84 M), and growth rates and intracellular concentrations of Cd, C, N, and S were measured. The mean Cd2+ concentration (pCd50 ) that reduced the growth rate of each species to 50% of its maximum varied by 2.5 orders of magnitude, from 10−6.23 for Emiliania huxleyi to 10−8.79 for Synechococcus sp. Taxonomic trends in Cd resistance were not apparent in these data. Cadmium quotas (mol Cd·L−1 cell volume) were lowest in species of Bacillariophyceae (ANOVA, P < 0.001), suggesting that they might regulate Cd transport differently than other taxa. Cellular S:C molar ratios increased in four of seven phytoplankton grown at high pCd (7.37–6.84) compared to low Cd ion concentrations (no added Cd), a result of increases in S·L−1 cell volume. Nitrogen:carbon molar ratios were also higher in Cd-exposed phytoplankton, as changes in N and S were highly correlated ( r = 0.98, P < 0.0001). In two species that were examined, S:C ratios increased as a linear function of increasing Cd concentration. The results demonstrate large variability in Cd resistance among phytoplankton that is primarily a function of interspecific differences in Cd detoxification. 相似文献
3.
The effects of environmental variables, particularly irradiance, on the sinking rates of phytoplankton were investigated using cultures of Chaetoceros gracilis Schütt and C. flexuosum Mangin in laboratory experiments; these data were compared with results from assemblages in the open ocean and marginal ice zone of the Greenland Sea. In culture experiments both the irradiance under which the diatom was grown and culture growth rate were positively correlated with sinking rates. Sinking rates (ψ) in the Greenland Sea were smallest when determined from chlorophyll (mean ψchl= 0.14 m · d?1) and biogenic silica (ψsi= 0.14 m · d?1) and greatest when determined from particulate carbon (ψc= 0.55 m · d?1) and nitrogen (ψN= 0.64 m · d?1). Field measurements indicated that variations in sinking may be associated with changes in irradiance and nitrate concentrations. Because these factors do not directly affect water density, they must be inducing physiological changes in the cell which affect buoyancy. Although a direct response to a single environmental variable was not always evident, sinking rates were positively correlated with growth rates in the marginal ice zone, further indicating a connection to physiological processes. Estimats of carbon flux at stations with vertically mixed euphotic zones indicated that approximately 30% of the daily primary production sank from the euphotic zone in the form of small particulates. Calculated carbon flux tended to increase with primary productivity. 相似文献
4.
Phytoplankton primary productivity in the Southern Ocean is controlled by complex interactions among iron, light, and grazing. This project interfaced with the Southern Ocean iron experiment (SOFeX) that created two iron‐enriched patches north and south of the Polar Front each with distinct silicic acid concentrations. We used pulse amplitude modulated fluorometry and measured the recovery of the maximum quantum yield of photochemistry (Fv/Fm) for three size fractions (whole, <5, <20 μm) and light adapted quantum yield (ΔF/F′m) for single phytoplankton cells. The rates of recovery from iron stress were found to be unrelated to average cell size for both size‐fractioned and single‐celled measurements. The smallest cells appeared to exhibit more severe iron stress at the onset of the experiment than the larger taxa. The largest response detected in regression parameters was that of the pennate diatoms, which took only ~3.4 days to reach the maximum quantum yield, whereas the centric diatom Asteromphalus sp. reached maximum ΔF/F′m after ~10.4 days. The north patch measurements showed a different response; the smallest cells never reached maximum ΔF/F′m, whereas the size fraction containing the largest cells did. Single‐celled measurements made nearly 30 days after the initial iron enrichment suggested that diatoms were experiencing either silicic acid or iron limitation, whereas measurements of Phaeocystis sp. did not. These data represent the first study of in situ recovery rates of PSII for groups of diatoms, and may help elucidate the mechanisms of species change in response to environmental perturbation. 相似文献
5.
Phaeodactylum tricornutum and Chaetoceros sp. (Badllariophyceae), Isochrysis galbana (clone T-Iso) and Pavlova lutheri (Prymnesiophyceae), Nannochloris atomus (Chlorophyceae), Tetraselmis sp. (Prasinophyceae), and Gymnodinum sp. (Dinophyceae) were cultured at different extents of nutrient-limited growth: 50 and 5% of μmax. The lipid content of the algae was in the range 8.3–29.5% of dry matter and was generally higher in the Prymnesiophyceae than in the Prasinophyceae and the Chlorophyceae. Increasing extent of phosphorus limitation resulted in increased lipid content in the Bacillariophyceae and Prymnesiophyceae and decreased lipid content in the green flagellates N. atomus and Tetraselmis sp. The fatty acid composition of the algae showed taxonomic conformity, especially for the Bacillariophyceae, where the major fatty adds were 14:0, 16:0, 16:1, and 20:5n-3. These fatty acids were dominant also in the Prymnesiophyceae together with 22:6n-3. An exception was I. galbana, in which 18:1 was the major monounsaturated fatty add and 20:5n-3 was absent. The fatty acids of N. atomus and Tetraselmis sp. varied somewhat, but 16:0, 16:1, 18:1, 18:3n-3, and 20:5n-3 were most abundant. Gymnodinum sp. contained mainly 16:0, 18:4n-3, 20: 5n-3, and 22:6n-3. An increased level of nutrient limitation (probably phosphorus) resulted in a higher relative content of 16:0 and 18:1 and a lower relative content of 18:4n-3, 20:5n-3, and 22:6n-3. The nutrient limitation probably reduced the synthesis of n-3 polyunsaturated fatty acids. 相似文献
6.
7.
8.
Tiffany A. Moisan William M. Dunstan Ajcharaporn Udomkit George T. F. Wong 《Journal of phycology》1994,30(4):580-587
Several studies have suggested that phytoplankton play a role in the iodine cycle. Using a short-term incubation technique for determining the uptake of iodate by phytoplankton, cultures of Thalassiosira oceanica Hasle, Skeletonema costatum (Greville) Cleve, Emiliania huxleyi (Lohmann) Hay and Mohler, and Dunaliella tertiolecta Butcher were found to be capable of assimilating iodate at rates ranging from 0.003 to 0.24 nmol IO3?·μg chlorophyll a?1·h?1. The kinetics for the uptake of iodate can be modeled, and the similarity between the model and experimental results suggests that there is a steady state between iodate uptake and release of dissolved iodine from the cells, presumably in the form of iodide. Two experiments were conducted in the Sand Shoal Inlet of the Cobb Bay estuary (37°15′N, 75°50′W). The uptake of iodate was 0.26 and 0.08 nmol IO3?·μg chlorophyll a?1·h?1 during high and low tide, respectively. Using field estimates based on measured levels of iodate in the estuary, we estimate that phytoplankton can take up as much as 3% of the ambient pool of iodate on a daily basis and the entire pool in about 1 month. Thus, phytoplankton can be a significant component of the global iodine cycle by mediating changes in the speciation of iodine in the marine environment. 相似文献
9.
BICARBONATE UTILIZATION BY MARINE PHYTOPLANKTON SPECIES 总被引:4,自引:0,他引:4
Nabil A. Nimer M. Debora Iglesias-Rodriguez Michael J. Merrett 《Journal of phycology》1997,33(4):625-631
The contribution of bicarbonate to total dissolved inorganic carbon (DIC) utilization was investigated using 18 marine phytoplankton species, including members of Bacillariophyceae, Dinophyceae, Prymnesiophyceae, and Raphidophyceae, under carbon-replete or -limited conditions. Extracellular carbonic anhydrase (CA) was assayed as an indicator of extracellular CA-catalyzed HCO− 3 utilization. For some species, extracellular CA was constitutive, in others activity was detected under conditions of carbon limitation, and in others, even under carbon-limited conditions, activity was not detected. In species without extracellular CA, direct HCO− 3 uptake was investigated using a pH drift technique in a closed system, DIC measurements, and the use of the anion exchange inhibitor 4'4'-diisothiocyanatostilbene-2,2-disulfonic acid (DLDS). Three of these species (Chaetoceros compressus, Thalassiosira pseudonana, and Glenodinium foliaceum) gave a pH drift not inhibited by DIDS, but cultures of Chrysochromulina kappa, Gephrocapsa oceanica, and Coccolithus pelagicus, in which DLDS inhibited DIC uptake, did not give a pH drift. This result shows that direct HCO3 − transport may occur by an anion exchange-type mechanism in some species but not others. Of the eighteen species investigated, only Heterosigma akashiwo did not have the potential for direct uptake or extracellular CA-catalyzed HCO− 3 utilization. 相似文献
10.
The effects of Fe deficiency on the marine cyanobacterium Synechococcus sp. were examined in batch cultures grown on nitrate or ammonium as a sole nitrogen source under two different irradiances. Fe-stressed cells showed lower chlorophyll a content and cellular C and N quotas. Light limitation increased the critical iron concentration below which both suppression of growth rate and changes in cellular composition were observed. At a limiting irradiance (26 μmol.m−2.s−1), this critical value was ∼10 nM, a 10 times increase compared to high-light cultures. Moreover, at low light the cellular chlorophyll a concentration was higher than at saturating light (110 μmol.m−2.s−1), this difference being most pronounced under Fe-stressed conditions. Cells grown on ammonium showed a lower half-saturation constant for Fe (Ks) compared to cells grown on nitrate, indicating Synechococcus sp. has the ability to grow faster on ammonium than on nitrate in a low Fe environment at high light. Consequently, in high-nutrient and low-chlorophyll regions where Fe limits new production, cyanobacteria most likely grow on regenerated ammonium, which requires less energy for assimilation. The Ks for growth on Fe at low light was significantly higher than at high light compared with the cells grown on the same N source, suggesting the cells require more Fe at low light. Therefore, if cells that are already Fe-limited also become light-limited, their iron stress level will increase even more. For cyanobacteria this is the first report of a study combining the interactions of Fe limitation, light limitation, and nitrogen source (NO3− vs. NH4+). 相似文献
11.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions. 相似文献
12.
Cell division patterns in Thalassiosira weissflogii (Grun.), Hymenomonas carterae (Braarud and Fagerl), and Amphidinium carteri (Hulburl) grown in cyclostat culture were analyzed as functions of the periodic supply of light and the limiting nutrient (ammonium) and of combinations of these two factors. In all three species, division patterns were phased by light/dark cycles in N–limited as well as N–replte conditions, and also to ammonium pulses in N–limited growth in continuous light. Both the degree and timing of the cell cycle phasing varied among species. When both stimuli were present, the influence of the photocycle overrode the N–pulse stimulus in H. carterae and A. carteri. while in T. weissflogii, division was always phased by the timing of the N–pulse regardless of the phase angle between the photocycle and the pulse. 相似文献
13.
Ten species of marine phytoplankton were grown under a range of photosynthetic photon flux densities (PFDs) and examined for variation in cell volume and carbon quota. Results suggest that in response to low PFDs phytoplankton generally reduce their cell volume and frequently reduce their carbon quota. A significant linear relationship between the log of PFD (I) and cell volume (in nine of ten species) and log I and carbon quota (four of ten species) was demonstrated. When exposed, to a transient in light intensity, Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal underwent a rapid adaptation in cell volume and carbon quota. Cells going from low light to high light reached maximum mean cell volume within 5 h, and cells going from high light to low light reached a minimum mean cell volume within 12 h. The resulting kinetic constant (k; a measure of the rate of adaptation) was considerably larger than previously reported k values. Ditylum brightwellii (West) Grunow increased in length but did not increase in width during a transient to increased irradiance. Nutrient limitation was shown to override PFD in determining cell volume and carbon quota for Heterosigma akashiwo Hada. Cells grown at equivalent irradiances but N-limited, were smaller than light-limited and nutrient-saturated cells. Therefore, cell volume and carbon quota do not have the same relationship with PFD when factors other than PFD control growth rate. The ecological implications of reduced cell volumes and carbon quotas with decreasing PFD include possible impacts on CO2 budgets, an influence on sinking rates, potential changes in predation rates, and surface area/cell volume benefits. 相似文献
14.
The toxic effects of copper on resting spore formation and viability in the marine diatom Chaetoceros protuberans Lauder were determined both with and without silicic acid added to the medium. With silicic acid available, partial inhibition of resting spore formation occurred only at the highest cupric ion activity (pCu 8.6), while the percentage of cells forming spores at pCu's 10.2 and 11.3 was nearly the same as in the controls. Without silicic acid added to the medium, sporulation was completely inhibited at pCu 8.6 and greatly inhibited, at pCu 10.2. At pCu 11.3 and in the controls, the rate of spore formation was less than 50%. The results indicate that the inhibition of resting spore formation by copper is related to the concentration of silicic acid available to cells of C protuberans. This is consistent with previous studies which show that copper toxicity during vegetative growth involves interference with silicification in diatoms and is a Junction of the silicic acid concentration of the medium. Viable resting spores of C. protuberans were still present in cultures following exposure to elevated copper concentrations during a 100-day incubation period. This indicates that resting spores can serve to enhance diatom survival in areas polluted by heavy metals. 相似文献
15.
The toxic effects of copper on resting spore formation and viability in the marine diatom Chaetoceros protuberans Lauder were determined both with and without silicic acid added to the medium. With silicic acid available, partial inhibition of resting spore formation occurred only at the highest cupric ion activity (pCu 8.6), while the percentage of cells forming spores at pCu's 10.2 and 11.3 was nearly the same as in the controls. Without silicic acid added to the medium, sporulation was completely inhibited at pCu 8.6 and greatly inhibited at pCu 10.2. At pCu 11.3 and in the controls, the rate of spore formation was less than 50%. The results indicate that the inhibition of resting spore formation by copper is related to the concentration of silicic acid available to cells of C. protuberans. This is consistent with previous studies which show that copper toxicity during vegetative growth involves interference with silicification in diatoms and is a function of the silicic acid concentration of the medium. Viable resting spores of C. protuberans were still present in cultures following exposure to elevated copper concentrations during a 100-day incubation period. This indicates that resting spores can serve to enhance diatom survival in areas polluted by heavy metals. 相似文献
16.
F. Visser L. J. A. Gerringa S. J. Van der gaast H. J. W. De baar K. R. Timmermans 《Journal of phycology》2003,39(6):1085-1094
The atmosphere is widely recognized as a major source of Fe in the form of iron‐containing dust. This study provides the first experiments in which the impact of dust on the growth rates of single species of Antarctic diatoms was assessed under laboratory conditions. The dust was among others characterized by x‐ray powder diffraction analysis, analysis of total and amorphous Fe content, and dissolution rates of Fe in seawater. The amount of bioavailable Fe from the dust was determined, not via the complicated chemistry of Fe in seawater but by using diatoms as bioindicators for available Fe. Cultures of two large diatom species, Actinocyclus sp. and Thalassiosira sp., were amended with potential dust aerosols from two dust‐supplying regions, Namibia and Mauritania, and responses on growth rates were monitored. Apart from a difference in total Fe content, a difference in crystallinity existed in the Fe minerals of both dust types. The fraction of amorphous Fe was reflected in a higher reactivity/dissolution of Fe in seawater. The increase in growth rate upon dust addition was positively related with the amount of amorphous Fe in the dust and with the dissolution rate of Fe in seawater. However, compared with equal FeCl3 concentrations, the dissolved Fe from the dust was not completely available for the diatoms. Interestingly, the diatoms used only a small part of the dissolved Fe, demonstrating the importance of algae as bioindicators. 相似文献
17.
In a series of 188 experiments on the, light-saturation curve for natural assemblages of phytoplankton at 3 stations in Nova Scotia coastal waters, it was found that both the initial slope (α) of the curve and the assimilation number (PmB) varied about 5-fold throughout the year. No differences could be detected between stations, but both α and PmB decreased with depth. The mean value of α for all the experiments was 0.21 mg C[mg Chl a]?1· h?1· W?1· m2 with a range from 0.03 to 0.63. An explanation is offered for the nonconstancy of a in terms of the effect of cell-size and shape on self-shading. An estimate is made from first principles of the physiological maximum-attainable value of α. This estimate corresponds, within the limits of experimental error, to the highest values of α observed in the study. It is deduced that on the average the phytoplankton were photosynthesizing at only 44% maximum capacity. The mean value of PmB for all experiments was 4.9 mg C[mg Chl a]?1· h?1, with a range from 0.73 to 24.8. In the matrix of partial correlation coefficients, α and PmB were positively correlated with each other; α was correlated with mean solar radiation averaged over the 3 days prior to the experiment, but uncorrelated with temperature; PmB was correlated strongly with temperature but uncorrelated with recent solar radiation. The results show that PmB could be estimated from α and temperature using an empirical multiple regression equation, independent of depth. It is suggested that α and PmB are both correlated with some other factor not measured in the study, perhaps the mean cell-size of the populations, or the nutrient status of the cells. The predictability of primary production is discussed in the light of this evidence. 相似文献
19.
湖水含盐量和Cu2+浓度变化对Kinneret湖浮游植物的影响 总被引:1,自引:0,他引:1
通过人为改变湖水中的Cu^2 浓度和含盐量的方法,Cu^2 浓度和含盐量变化对Kinneret湖水中浮游植物可能造成的影响进行了分析。结果表明,湖水Cu^2 浓度增加会抑制Kinneret湖水中藻类等浮游植物的生长。这对改善湖水水质来7说是非常有利的,但高的Cu^2 浓度对农作物生长和人类健康是有害的,在另一方面,对含盐量较低的约旦河水来说,适当增加Cu^2 浓度则有利于藻类的生长。Kinneret湖中浮游植物的年平均生物量随湖水含盐量的下降而有增加的趋势,特别是当含盐量低于200μ左右时,浮游植物中蓝藻占的比例会升高,这对作为饮用水资源的Kinneret湖水来说是不利的,由此可见,适当控制和维持Kinneret湖水Cu^2 浓度和含盐量对湖水水质保护具有重要的意义。 相似文献
20.
The phylogeny and diversity of two key functional genes were investigated as the basis for improved understanding of the community structure of natural phytoplankton assemblages in marine environments. New partial NR (encoding eukaryotic assimilatory nitrate reductase) and rbcL (encoding LSU of RUBISCO) sequences from 10 cultured phytoplankton strains are reported. Phytoplankton community composition from Monterey Bay (MB), a coastal upwelling site on the California coast, and the Western English Channel (EC), a North Atlantic spring bloom environment, was elucidated based on NR and rbcL sequences. Diatoms were by far the most frequently detected group in both environments, consistent with their importance as a major bloom‐forming group. Both NR and rbcL libraries contained sequences representing cosmopolitan types such as Emiliania huxleyi (Lohmann) W. W. Hay et H. P. Mohler, Phaeocystis, and Pseudo‐nitzschia. The NR and rbcL libraries also contained sequences from other chromophytic algal groups and the Dinophyceae (alveolates). Sequences showing identity with key bloom‐forming organisms including E. huxleyi, Phaeocystis pouchetii (Har.) Lagerh., Pseudo‐nitzschia sp., and Thalassiosira sp. in the rbcL libraries confirm previous studies from these environments based on traditional approaches. Diversity/pattern analyses detected significant compositional differences among the libraries, which were consistent with patterns identified by phylogenetic analysis, but these patterns were not strongly correlated with obvious environmental variables such as temperature and nitrate concentration. Many new and divergent NR and rbcL sequences are reported, but the extent to which they represent unknown types cannot be determined until greater effort is made to sequence the existing culture collections. 相似文献