首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Palaeogene Diomedeoididae are amongst the earliest representatives of procellariiform birds (albatrosses, tubenoses, and allies). Although several fossils of these birds have been reported in the past, many details of their osteology remained unknown. Here we describe a comprehensive collection of diomedeoidid fossils from the Rupelian stratotype in Belgium, which was found more than 100 years ago. The material includes all major limb elements as well as other cranial and postcranial bones, and allows the recognition of previously unknown features of phylogenetic significance. Based on these new osteological data, diomedeoidids were for the first time subjected to a phylogenetic analysis, which resulted in a position outside a clade including Hydrobatidae (northern storm‐petrels), Pelecanoididae (diving‐petrels), and Procellariidae (fulmars, petrels, shearwaters, and allies), either as the sister taxon of Diomedeidae (albatrosses) or as that of all crown group Procellariiformes. The latter placement is better supported by the osteological evidence, and diomedeoidids lack several apomorphies of crown group Procellariiformes. Previously unrecognized derived features are reported that support a monophyletic Hydrobatidae, thus contradicting recent proposals that Oceanitinae (southern storm‐petrels) are the earliest diverging crown group Procellariiformes. The new fossils also have a bearing on the convoluted taxonomy of diomedeoidids, and Diomedeoides Fischer, 1985 is synonymized with Rupelornis van Beneden, 1871. Diomedeoides lipsiensis (Fischer, 1983) is synonymous with Rupelornis definitus (van Beneden, 1871), a species that exhibits a large size range. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 854–875.  相似文献   

2.
High level of morphological as well as chemical variability exists within the genus Ocimum, and its taxonomy and phylogenetic relationships are still doubtful. For evaluating interspecific genetic relationships among the Ocimum species, genotyping with intersimple sequence repeat (ISSR) markers and sequence analyses of noncoding psbA‐trnH intergenic region belonging to chloroplast DNA were carried out. Although ISSR markers are highly efficient and reproducible, they have not been used extensively in phylogenetic studies. The use of the plastidial barcode candidate was expected to provide more variable and informative insight into evolutionary rates, and was thus employed as a phylogenetic marker to assess interspecific relationships. This study revealed that the ISSR markers were more efficient than psbA‐trnH sequences in resolving the current status of Ocimum L. genus. Distance‐ and character‐based methodological approaches applied on the molecular data with biparental and maternal inheritance were used for deducing the phylogenetic relationships among Ocimum species. Average polymorphic information content (0.344) and resolving power (6.285) depicted through ISSR markers proved to be efficient in discriminating the studied species of Ocimum. The primers used in this study revealed 99.585% polymorphism across the species demonstrating the polymorphic nature of ISSR markers.  相似文献   

3.
The taxonomic validity of the genus Hydropuntia Montagne (1843) (including Polycavernosa) within the Gracilariaceae (Gracilariales, Rhodophyta) is controversial. Morphological characters that define species of Hydropuntia are said to be variable and to overlap with those of Gracilaria. Here we present a global phylogenetic study of the family based on a Bayesian analysis of a large rbcL DNA sequence dataset indicating that the genus Hydropuntia forms a well supported monophyletic clade within the family, and recognize Hydropuntia as a genus distinct from Gracilaria. We also conducted smaller phylogenetic analyses in which thirty four Hydropuntia rbcL sequences resulted in two major clades within the genus, comprising a Caribbean clade and an Indo‐Pacific clade. Diagnostic reproductive stages that separate these two clades will be illustrated.  相似文献   

4.
Abstract Cordyceps is an endoparasite ascomycetous genus containing approximately 450 species with a diversity of insect hosts, traditionally included in the family Clavicipitaceae of Ascomycota. Establishing the relationships among species with a varied range of morphologies and hosts is of importance to our understanding of the phylogeny and co‐evolution of parasites and hosts in entomopathogenic ascomycetes. To this end, we used a combination of molecular index and morphological characters from 40 representative species to carry out comprehensive molecular phylogenetic analyses. Based on the phylogenetic tree, we used the program DISCRETE for inferring the rates of evolution and finding ancestral states of morphological character. The phylogenetic analyses revealed two important points. (i) Types of perithecia attached to stroma reflected an evolutionary trend in Cordyceps. The vertically immersed perithecia form was the ancestral state, superficial and obliquely immersed perithecia were derived characters, obliquely immersed was irreversible. Species with obliquely immersed perithecia were in a closely related group and were the derived group. (ii) A strong correlation between fungal relatedness and the microhabitat supported the hypothesis that the host jumps through commingling in soil microhabitats. Based on the results of these analyses, host switching explains the diversity of entomopathogenic fungi of the genus Cordyceps.  相似文献   

5.
A near-complete, partially articulated skeleton of a hummingbird was recently found in the menilite shales of the Polish Flysh Carpathians. The specimen is dated to the Early Oligocene (Rupelian, approx. 31 Myr). It shares derived characters with extant hummingbirds and plesiomorphic characters with swifts. Its long, thin beak and short and stout humerus and ulna are typical for hummingbirds, but the coracoid resembles that observed in swifts. The osteology of the specimen is generally similar to that of the hummingbird described from the Early Tertiary of Germany but because it clearly differs in some characters from the German hummingbird Eurotrochilus inexpectatus, it is described as a new species of the same genus.  相似文献   

6.
A new heron species, Ardea sytchevskayae sp. nov., from the Middle Miocene Sharga locality is described. The new species is represented by an almost complete coracoid and a few partial coracoids, partial scapula, and caprometacarpus. A. sytchevskayae was a relatively large heron, of the same size as A. alba, and intermediate in morphology between A. alba and other species traditionally included in this genus. In addition, the Sharga locality has yielded a large bittern and a medium-sized heron of uncertain taxonomic position.  相似文献   

7.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

8.
The lizard genus Kentropyx (Squamata: Teiidae) comprises nine species, which have been placed in three species groups (calcarata group, associated to forests ecosystems; paulensis and striata groups, associated to open ecosystems). We reconstructed phylogenetic relationships of Kentropyx based on morphology (pholidosis and coloration) and mitochondrial DNA data (12S and 16S), using maximum parsimony and Bayesian methods, and evaluated biogeographic scenarios based on ancestral areas analyses and molecular dating by Bayesian methods. Additionally, we tested the life‐history hypothesis that species of Kentropyx inhabiting open ecosystems (under seasonal environments) produce larger clutches with smaller eggs and that species inhabiting forest ecosystems (under aseasonal conditions) produce clutches with fewer and larger eggs, using Stearns’ phylogenetic‐subtraction method and canonical phylogenetic ordination to take in to account the effects of phylogeny. Our results showed that Kentropyx comprises three monophyletic groups, with K. striata occupying a basal position in opposition to previous suggestions of relationships. Additionally, Bayesian analysis of divergence time showed that Kentropyx may have originated at the Tertiary (Eocene/Oligocene) and the ‘Pleistocene Refuge Hypothesis’ may not explain the species diversification. Based on ancestral reconstruction and molecular dating, we argued that a savanna ancestor is more likely and that historical events during the Tertiary of South America promoted the differentiation of the genus, coupled with recent Quaternary events that were important as dispersion routes and for the diversification at populational levels. Clutch size and egg volume were not significantly different between major clades and ecosystems of occurrence, even accounting for the phylogenetic effects. Finally, we argue that phylogenetic constraints and phylogenetic inertia might be playing essential roles in life history evolution of Kentropyx.  相似文献   

9.
10.
Fumana is a diverse genus of the Cistaceae family, consisting of 21 currently accepted species. In this study, nuclear (ITS) and plastid (matK, trnT‐L) molecular markers were used to reconstruct the phylogeny and to estimate divergence times, including 19 species of Fumana. Phylogenetic analyses (Bayesian Inference, Maximum Parsimony and Maximum Likelihood) confirmed the monophyly of Fumana and did not support the infrageneric divisions previously established. The results support four main clades that group species that differ in vegetative and reproductive characters. Given the impossibility to define morphological characters common to all species within the clades, our proposal is to reject infrageneric divisions. Molecular dating and ancestral area analyses provide evidence for a Miocene diversification of the genus in the north‐western Mediterranean. Ancestral state reconstructions revealed ancestral character states for some traits related to xeric and arid habitats, suggesting a preadaptation to the Mediterranean climate.  相似文献   

11.
Male genitalia are among the most rapidly evolving and divergent morphological structures and sexual selection is known to drive this phenomenon in many taxa. Because of their diversity, even within a single genus, genital characters are frequently used to infer relationships among closely‐related species. Moths within the genus Izatha (Xyloryctidae) are ideal candidates for investigating the phylogenetic patterns of genital evolution as they display great variation in male genital structure and complexity. We determined the evolutionary relationships among 31 species of Izatha by constructing a molecular phylogeny of the genus based on the mitochondrial cytochrome oxidase subunit I gene and the isocitrate dehydrogenase and carbamoylphosphate synthase domain protein nuclear genes. This allowed estimations of ancestral male genital character states and patterns of male genital diversification using maximum‐likelihood models. The genus is divided into two well‐supported clades and two poorly supported clades at the root of the phylogeny with incomplete phylogenetic resolution within two species groups, likely due to rapid speciation. Izatha display a number of apomorphic phallic traits including cornuti (sclerotized spines) which are either discharged into the female during copulation (deciduous cornuti) or fixed to the male phallus (compound and fish‐hook cornuti). Within the genus, there is a reduction of secondary genital characters – the uncus and gnathos – but an elaboration of another grasping structure, the juxta; the potential origin and functionality of these male genital traits are discussed. Overall, some male genital characters provided a good indication of species relationships; however, several parts of the complex male genitalia of Izatha show evidence of homoplasy and convergence highlighting the problems of using these traits in determining species relationships. Additionally, this convergence has highlighted that complex genital structures may evolve repeatedly and independently within a lineage.  相似文献   

12.
The ant genus Prenolepis (Hymenoptera: Formicidae) is the nominal member of the recently established Prenolepis genus‐group within the subfamily Formicinae. Our molecular phylogenetic analyses using fragments from five nuclear genes (arginine kinase, carbomoylphosphate synthase, elongation factor 1‐alpha F1, elongation factor 1‐alpha F2, wingless) and one mitochondrial gene (cytochrome oxidase I) indicate that this genus is polyphyletic. Although the majority of Prenolepis species was found to belong to the same monophyletic group (Prenolepis sensu stricto), a smaller subset of Prenolepis species, all found in either Central America or the Greater Antilles, was robustly inferred to comprise a distinct lineage that is sister to the Old World genus Paraparatrechina. Here we describe this newly discovered lineage within the larger Prenolepis genus‐group clade. The genus Zatania, gen.n. is composed of five extant species (Zatania albimaculata, Zatania cisipa, Zatania gibberosa, Zatania gloriosa, sp.n. and Zatania karstica) and one Dominican amber fossil species (Zatania electra?, sp.n. ). These are medium‐sized ants (generally between 2.5 and 3 mm in total length) that are characterized by having long scapes and legs, and elongated mesosomata. A reliance on worker‐based taxonomy has previously prevented the discovery of this new lineage because of worker convergence consisting of various combinations of elongated mesosomata, long scapes and legs, and a constriction immediately behind the pronotum, observed in several distinct lineages within the Prenolepis genus‐group. However, we did find that male morphology complements our molecular results in revealing important diagnostic and potentially phylogenetically informative characters. Our study highlights the value for ant systematics to expand beyond its traditional foundation of worker‐based morphology and embrace character systems from other castes and molecular data.  相似文献   

13.
Photosynthetic euglenids acquired chloroplasts by secondary endosymbiosis, which resulted in changes to their mode of nutrition and affected the evolution of their morphological characters. Mapping morphological characters onto a reliable molecular tree could elucidate major trends of those changes. We analyzed nucleotide sequence data from regions of three nuclear‐encoded genes (nSSU, nLSU, hsp90), one chloroplast‐encoded gene (cpSSU) and one nuclear‐encoded chloroplast gene (psbO) to estimate phylogenetic relationships among 59 photosynthetic euglenid species. Our results were consistent with previous works; most genera were monophyletic, except for the polyphyletic genus Euglena, and the paraphyletic genus Phacus. We also analyzed character evolution in photosynthetic euglenids using our phylogenetic tree and eight morphological traits commonly used for generic and species diagnoses, including: characters corresponding to well‐defined clades, apomorphies like presence of lorica and mucilaginous stalks, and homoplastic characters like rigid cells and presence of large paramylon grains. This research indicated that pyrenoids were lost twice during the evolution of phototrophic euglenids, and that mucocysts, which only occur in the genus Euglena, evolved independently at least twice. In contrast, the evolution of cell shape and chloroplast morphology was difficult to elucidate, and could not be unambiguously reconstructed in our analyses.  相似文献   

14.
The tribe Abrotrichini (five genera and 14 living species) is a small clade within the speciose subfamily Sigmodontinae (Rodentia, Cricetidae), representing one of the extant successful radiations of mammals at southern high latitudes of the Neotropics. Its distribution is mostly Andean, reaching its greatest diversity in southern Argentina and Chile. We evaluate the phylogenetic relationships within this tribe through parsimony and Bayesian approaches based on 99 morphological characters (including 19 integumental characters, 38 skull characters, 31 dental characters, three postcranial skeletal characters, seven from the male accessory glands and phallus and one from the digestive system) and six molecular markers (one mitochondrial and five nuclear). We include representatives of all, except one, of the currently recognized species of living Abrotrichini plus one fossil form. Based on total evidence, we recovered a primary division between the genus Abrothrix and a group including the long‐clawed Abrotrichini, Chelemys, Geoxus, Notiomys and Pearsonomys. Both clades are recognized and named here as subtribes. The large degree of morphological variation observed within Abrothrix suggests that species in the genus fall into four groups, which we recognize as subgenera. In addition, the two known species of Chelemys do not form a monophyletic group, and Geoxus was recovered as paraphyletic with respect to Pearsonomys. To reconcile classification and phylogenetics, we describe a new genus for Chelemys macronyx and include Pearsonomys as a junior synonym of Geoxus. Our results highlight the importance of both morphology and molecules in resolving the phylogenetic relationships within this tribe. Based on biogeographical analyses, we hypothesize that Abrotrichini originated in south‐western South America by vicariance and then diversified mostly by successive dispersal events.  相似文献   

15.
Molecular sequences now overwhelm morphology in phylogenetic inference. Nonetheless, most molecular studies are conducted on a limited number of taxa, as DNA rarely can be analysed from old museum types or fossils. During the last 20 years, more than 150 molecular studies have challenged the current phylogenetic classification of the family Drosophilidae Rondani based on morphological characters. Most studies concerned a single genus, Drosophila Fallén, and included only few representative species from 17 out of the 78 genera of the family. Therefore, these molecular studies were unable to provide an alternative classification scheme. A supermatrix analysis of seven nuclear and one mitochondrial genes (8248 bp) for 33 genera was conducted using outgroups from one calyptrate and four ephydroid families. The Bayesian phylogeny was consistent with previous molecular studies including whole genome sequences and divided the Drosophilidae into four monophyletic clades. Morphological characters, mostly male genitalia, then were compared thoroughly between the four clades and homologous character states were identified. These states were then checked for 70 genera and a revised phylogenetic, family‐group classification for the Drosophilidae is proposed. Two genera –Cladochaeta Coquillett and Diathoneura Duda – of the tribe Cladochaetini Grimaldi are transferred to the family Ephydridae. The Drosophilidae is divided into two subfamilies: Steganinae Hendel (30 genera) and Drosophilinae Rondani (43 genera). A further two genera, Apacrochaeta Duda and Sphyrnoceps de Meijere, are incertae sedis, and Palmophila Grimaldi, is synonymized with Drosophila syn.n. The Drosophilinae is subdivided into two tribes: the re‐elevated Colocasiomyini Okada (nine genera) and Drosophilini Okada. The paraphyly of the genus Drosophila was not resolved to avoid affecting the binomina of important laboratory model species; however, its subgeneric classification was revised in light of molecular and morphological data. Three subgenera, namely Chusqueophila Brncic, Phloridosa Sturtevant and Psilodorha Okada, were synonymized with the subgenus Drosophila (Drosophila) Fallén syns.n. Among the 45 species groups and 5 species complexes of Drosophila (Drosophila), 22 groups and 1 complex were transferred to the subgenus Drosophila (Siphlodora) Patterson & Mainland and 6 groups, 2 species subgroups and 3 complexes are considered incertae sedis within the genus Drosophila. Different morphological characters provide different signals at different phylogenetic scales: thoracic characters (wing venation and presternal shape) discriminate families; grasping and erection‐related characters discriminate subfamilies to tribes; whereas phallic paraphyses, i.e. auxiliary intromittent organs, discriminate genera and Drosophila subgenera. The study shows the necessity of analysing morphological characters within a molecular phylogenetic framework to translate molecular phylogenies into taxonomically‐comprehensive classifications.  相似文献   

16.
17.
18.
The pollen–ovule ratio (P/O) is commonly used to estimate the mode of sexual reproduction in flowering plants. In previous studies, a clear correspondence has been detected between this character and the degree of autogamy. We here investigate variation in this character and its expected correlates in the genus Veronica (Plantaginaceae). Pollen–ovule ratios of 45 species representing eleven percent of all the species in the genus were investigated and compared with results from crossing experiments from previous studies. In addition, multiple populations of 17 of the 45 studied species were sampled and a controlled‐environment experiment was conducted to evaluate the extent of intraspecific variation. Moreover, relationships between P/O and other primary and secondary reproductive characters of the Veronica flower were investigated in relation to a phylogenetic hypothesis in order to determine the phylogenetic constraints on reproductive characters. The differences in P/O among species correspond well to the diversity of mating systems in Veronica and correlate well with other floral characters such as corolla size. These characters together seem to allow a powerful and fast tool to infer mating systems. However, causes for intraspecific variation of P/O, such as different cytotypes, ecotypes or different growth conditions, need to be considered.  相似文献   

19.
Recently, the systematics and biogeography of the Mediterranean biota have received much attention. This paper deals with Eupholidoptera Ma?an, a Mediterranean lineage of Tettigoniidae. The genus is restricted to the northern and eastern basin of the Mediterranean, with a significant number of species found on the Aegean islands. To produce a phylogeny and use it to make assumptions about the historical biogeography of Eupholidoptera, material of 46 species from several collections was studied. A phylogenetic analysis based mainly on morphological characters suggested two lineages in the genus: the E. chabrieri and the E. prasina groups. Based on the consistency between historical geographical events and branching events on the phylogenetic tree, Eupholidoptera is assumed to have evolved from an ancestor present in the Aegeid plate in the Mid‐Miocene. The division of the Aegeid plate into Anatolia and Greece in the Tortonian, the reoccurrence of terrestrial corridors between these mainlands in the Messinian, the regression of the Aegean area in the Pliocene and sea level changes in the Pleistocene are assumed to have been the main palaeogeographical events directing speciation in Eupholidoptera. As most of the species are allopatric, vicariance is suggested to be the main pattern. By combining the nature of the characters used in the phylogenetic analysis, the phylogenetic tree produced and the biogeographical assumptions, four tentative conclusions can be made: (i) radiation in the genus is a result of divergence in morphology; (ii) because the main character source is male genitalia, there has possibly been intensive sexual selection, which leads to morphological speciation; (iii) as the difference in temporal parameters of the song is prominent in sympatric/parapatric species pairs only, co‐occurrence is suggested to be the main reason driving divergence in the song; (iv) there seems to be a negative correlation between the size of the distribution range and the evolutionary rate in speciation; this may be the reason why the E. prasina group (restricted to a small part of the range of the genus) is more diverse than the E. chabrieri group, which is distributed over the entire range.  相似文献   

20.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号