共查询到20条相似文献,搜索用时 46 毫秒
1.
Kitana M. Kaiphanliam Brenden Fraser-Hevlin Eric S. Barrow William C. Davis Bernard J. Van Wie 《Biotechnology progress》2023,39(6):e3388
One of the current difficulties limiting the use of adoptive cell therapy (ACT) for cancer treatment is the lack of methods for rapidly expanding T cells. As described in the present report, we developed a centrifugal bioreactor (CBR) that may resolve this manufacturing bottleneck. The CBR operates in perfusion by balancing centrifugal forces with a continuous feed of fresh medium, preventing cells from leaving the expansion culture chamber while maintaining nutrients for growth. A bovine CD8 cytotoxic T lymphocyte (CTL) cell line specific for an autologous target cell infected with a protozoan parasite, Theileria parva, was used to determine the efficacy of the CBR for ACT purposes. Batch culture experiments were conducted to predict how CTLs respond to environmental changes associated with consumption of nutrients and production of toxic metabolites, such as ammonium and lactate. Data from these studies were used to develop a kinetic growth model, allowing us to predict CTL growth in the CBR and determine the optimal operating parameters. The model predicts the maximum cell density the CBR can sustain is 5.5 × 107 cells/mL in a single 11-mL conical chamber with oxygen being the limiting factor. Experimental results expanding CTLs in the CBR are in 95% agreement with the kinetic model. The prototype CBR described in this report can be used to develop a CBR for use in cancer immunotherapy. 相似文献
2.
ABEL TRUJILLO-OCAMPO HYUN-WOO CHO AMANDA C. HERRMANN WILFREDO RUIZ-VAZQUEZ ANDREW B. THORNTON HONG HE DAN LI MARIAM A. QAZILBASH QING MA STEVEN A. PORCELLI ELIZABETH J. SHPALL JEFFREY MOLLDREM JIN S. IM 《Cytotherapy》2018,20(8):1089-1101
Background aims
CD1d-restricted invariant natural killer (iNK) T cells are rare regulatory T cells that may contribute to the immune-regulation in allogeneic stem cell transplantation (ASCT). Here, we sought to develop an effective strategy to expand human iNK T cells for use in cell therapy to prevent graft-versus-host disease (GVHD) in ASCT.Methods
Human iNK T cells were first enriched from peripheral blood mononuclear cells (PBMCs) using magnetic-activated cell sorting separation, then co-cultured with dendritic cells in the presence of agonist glycolipids, alpha-galactosylceramide, for 2 weeks.Results
The single antigenic stimulation reliably expanded iNK T cells to an average of 2.8?×?107 per 5?×?108 PBMCs in an average purity of 98.8% in 2 weeks (N?=?24). The expanded iNK T cells contained a significantly higher level of CD4+ and central memory phenotype (CD45RA?CD62L+) compared with freshly isolated iNK T cells, and maintained their ability to produce both Th-1 (interferon [IFN]γ and tumor necrosis factor [TNF]α) and Th-2 type cytokines (interleukin [IL]-4, IL-5 and IL-13) upon antigenic stimulation or stimulation with Phorbol 12-myristate 13-acetate/ionomycin. Interestingly, expanded iNK T cells were highly autoreactive and produced a Th-2 polarized cytokine production profile after being co-cultured with dendritic cells alone without exogenous agonist glycolipid antigen. Lastly, expanded iNK T cells suppressed conventional T-cell proliferation and ameliorated xenograft GVHD (hazard ratio, 0.1266; P < 0.0001).Conclusion
We have demonstrated a feasible approach for obtaining ex vivo expanded, highly enriched human iNK T cells for use in adoptive cell therapy to prevent GVHD in ASCT. 相似文献3.
Tatsuya Kawamoto Yoshifumi Kobayashi Hidenori Nakajima Yukiko Yamagishi 《Biochemical and biophysical research communications》2013
Vascular network formation is a key therapeutic event in regenerative medicine because it is essential for mitigating or ameliorating ischemic conditions implicated in various diseases and repair of tissues and organs. In this study, we induced human induced pluripotent stem cells (hiPSCs) to differentiate into heterogeneous cell populations which have abilities to form vascular vessel-like structures by recapitulating the embryonic process of vasculogenesis in vitro. These cell populations, named cardiovascular blast populations (CBPs) in this report, primarily consisted of CD31+ and CD90+ cells. 相似文献
4.
BackgroundGas Permeable Rapid Expansion (G-Rex) bioreactors have been shown to efficiently expand immune cells intended for therapeutic use, but do not address the complexity of the viral transduction step required for many engineered T-cell products. Here we demonstrate a novel method for transduction of activated T cells with Vectofusin-1 reagent. Transduction is accomplished in suspension, in G-Rex bioreactors. The simplified transduction step is integrated into a streamlined process that uses a single bioreactor with limited operator intervention.MethodsPeripheral blood mononuclear cells (PBMCs) from healthy donors were thawed, washed and activated with soluble anti-CD3 and anti-CD28 antibodies either in cell culture bags or in G-Rex bioreactors. Cells were cultured in TexMACS GMP medium with interleukin (IL)-7 and IL-15 and transduced with RetroNectin in bags or Vectorfusin-1 in the G-Rex. Total viable cell number, fold expansion, viability, transduction efficiency, phenotype and function were compared between the two processes.ResultsThe simplified process uses a single vessel from activation through harvest and achieves 56% transduction with 29-fold expansion in 11 days. The cells generated in the simplified process do not differ from cells produced in the conventional bag-based process functionally or phenotypically.DiscussionThis study demonstrates that T cells can be transduced in suspension. Further, the conventional method of generating engineered T cells in bags for clinical use can be streamlined to a much simpler, less-expensive process without compromising the quality or function of the cell product. 相似文献
5.
Keiji Nakajima Yusuke Komiyama Hironori Hojo Fumiko Yano Naoko Nishikawa Tsuyoshi Takato 《Biochemical and biophysical research communications》2010,395(4):502-508
To effectively treat serious bone defects using bone-regenerative medicine, a small chemical compound that potently induces bone formation must be developed. We previously reported on the osteogenic effect of 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH), a helioxanthin-derivative, in vitro. Here, we report on TH’s osteogenic effects ex vivo and in vivo. TH-induced new bone formation in both calvarial and metatarsal organ cultures. A novel monitoring system of osteoblastic differentiation using MC3T3-E1 cells revealed that TH was released from α-TCP bone cement and this release continued for more than one month. Lastly, the implantation of the α-TCP carrier containing TH into defects in mouse skull resulted in increased new bone areas within the defects after 4 weeks. A TH-containing scaffold may help establish a more efficient bone regeneration system. 相似文献
6.
《Cytotherapy》2014,16(6):713-733
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality. 相似文献
7.
Christine Suquet 《Archives of biochemistry and biophysics》2010,493(2):135-142
The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking. 相似文献
8.
Robert L. Kruse Thomas Shum Haruko Tashiro Mercedes Barzi Zhongzhen Yi Christina Whitten-Bauer Xavier Legras Beatrice Bissig-Choisat Urtzi Garaigorta Stephen Gottschalk Karl-Dimiter Bissig 《Cytotherapy》2018,20(5):697-705
Background
Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection.Methods
We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice.Results
HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core–positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups.Conclusions
HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV. 相似文献9.
《Cytotherapy》2014,16(10):1384-1389
Background aimsDespite promising advances in cellular therapies, it will be difficult to fully test or implement new therapies until advances are made in the processes for cell preparation. This study describes the use of an advanced prototype of a flow-cytometry cell purification system constructed for operation in a clinical environment to prepare regulatory T cells defined as CD4+/CD25bright/CD127neg/low.MethodsThe sort performance of the Gigasort system was directly compared with available droplet sorters using mixtures of highly fluorescent and non-fluorescent 5-μm polystyrene particles. CD4+-enriched cell preparations were processed with the use of a sterile, disposable fluid handling unit with a chip containing parallel microfluidic-based sorters.ResultsSimilar purity and sort efficiency as found with droplet sorters were obtained with the 24-channel chip sorter system. Starting with 450 million fresh peripheral blood mononuclear cells, 150,000 to 1.7 million cells that were, on average, 85% FoxP3-positive and 97% viable, were obtained in <4 h.ConclusionsThis study presents a technology adapted to regulatory requirements for clinical cell purification and that achieves high throughput and cell-friendly conditions by use of a microfluidic chip with 24 parallel microsorters, providing a rapid, sterile method of purifying regulatory T cells accurately and with excellent viability. 相似文献
10.
Despite their limited proliferation capacity, regulatory T cells (Tregs) constitute a population maintained over the entire lifetime of a human organism. The means by which Tregs sustain a stable pool in vivo are controversial. Using a mathematical model, we address this issue by evaluating several biological scenarios of the origins and the proliferation capacity of two subsets of Tregs: precursor CD4+CD25+CD45RO− and mature CD4+CD25+CD45RO+ cells. The lifelong dynamics of Tregs are described by a set of ordinary differential equations, driven by a stochastic process representing the major immune reactions involving these cells. The model dynamics are validated using data from human donors of different ages. Analysis of the data led to the identification of two properties of the dynamics: (1) the equilibrium in the CD4+CD25+FoxP3+Tregs population is maintained over both precursor and mature Tregs pools together, and (2) the ratio between precursor and mature Tregs is inverted in the early years of adulthood. Then, using the model, we identified three biologically relevant scenarios that have the above properties: (1) the unique source of mature Tregs is the antigen-driven differentiation of precursors that acquire the mature profile in the periphery and the proliferation of Tregs is essential for the development and the maintenance of the pool; there exist other sources of mature Tregs, such as (2) a homeostatic density-dependent regulation or (3) thymus- or effector-derived Tregs, and in both cases, antigen-induced proliferation is not necessary for the development of a stable pool of Tregs. This is the first time that a mathematical model built to describe the in vivo dynamics of regulatory T cells is validated using human data. The application of this model provides an invaluable tool in estimating the amount of regulatory T cells as a function of time in the blood of patients that received a solid organ transplant or are suffering from an autoimmune disease. 相似文献
11.
Tanigawa K Yu H Sun R Nickoloff BJ Chang AE 《Cancer immunology, immunotherapy : CII》2000,48(11):635-643
We utilized the gene gun to transfect subcutaneous D5 melanoma and MT-901 mammary carcinoma tumors in situ with a granulocyte/macrophage-colony-stimulating
factor (GM-CSF) plasmid complexed to gold particles. There was diminished tumor growth following bombardment with GM-CSF plasmid,
which was apparent only during the period of administration. Transgenic GM-CSF was produced by the skin overlying the tumors
and not by the tumors themselves. GM-CSF plasmid bombardment resulted in increased cell yields within tumor-draining lymph
nodes (TDLN) with at least a 12-fold increase in the percentage of dendritic cells (8.9%) compared to controls (0.7%). Secondarily
activated TDLN cells from animals transfected with GM-CSF demonstrated enhanced cytokine release (interferon γ, GM-CSF and
interleukin-10) in response to tumor stimulator cells compared to controls, and had an increased capacity to mediate tumor
regression in adoptive immunotherapy. There was a small, but detectable, non-specific immune adjuvant effect observed with
gold particle bombardment alone, which was less than with GM-CSF plasmid. The adjuvant effect of GM-CSF plasmid required peri-tumoral
transgene expression since gene bombardment away from the tumor was ineffective.
Received: 27 April 1999 / Accepted: 27 August 1999 相似文献
12.
Matthew Gagnon Shashikant Nagre Wenge Wang Jon Coffman Gregory W. Hiller 《Biotechnology and bioengineering》2019,116(8):1946-1958
A novel, alternative intensified cell culture process comprised of a linked bioreactor system is presented. An N-1 perfusion bioreactor maintained cells in a highly proliferative state and provided a continuous inoculum source to a second bioreactor operating as a continuous-flow stirred-tank reactor (CSTR). An initial study evaluated multiple system steady-states by varying N-1 steady-state viable cell densities, N-1 to CSTR working volume ratios, and CSTR dilution rates. After identifying near optimum system steady-state parameters yielding a relatively high volumetric productivity while efficiently consuming media, a subsequent lab-scale experiment demonstrated the startup and long-term operation of the envisioned manufacturing process for 83 days. Additionally, to compensate for the cell-specific productivity loss over time due to cell line instability, the N-1 culture was also replaced with younger generation cells, without disturbing the steady-state of the system. Using the model cell line, the system demonstrated a two-fold volumetric productivity increase over the commercial-ready, optimized fed-batch process. 相似文献
13.
A xenogeneic‐free bioreactor system for the clinical‐scale expansion of human mesenchymal stem/stromal cells 下载免费PDF全文
Andrew Campbell Ana Fernandes‐Platzgummer Jeffrey M. Gimble Yuan Wen Shayne Boucher Mohan C. Vemuri Cláudia L. da Silva Joaquim M.S. Cabral 《Biotechnology and bioengineering》2014,111(6):1116-1127
14.
Current study determined, in sows, the accuracy of ultrasonography for in vivo (n = 8) and ex vivo (n = 7) evaluation of corpora lutea (CLs) and follicles ≥1.5 mm in size, by comparison with macroscopic findings in sliced ovaries. The accuracy for ex vivo detection of follicles increased with follicle size (P < 0.05), being low for 1.5-1.9 mm follicles (65.9%) and higher for ≥6 mm follicles (93.3%); differences between ultrasonographic and macroscopic observations were significant only for follicles smaller than 3.9 mm (P < 0.05), due to underestimation. Ex vivo observation succeeded to detect presence or absence of CLs in all the ovaries; the efficiency for determining the exact number of CLs being 94.4%. The accuracy for in vivo detection of follicles also increased with follicle size (P < 0.05), dropping to values lower than 40% for 1.5-1.9 mm follicles; therefore, there were significant differences between ultrasonographic and macroscopic observations (P < 0.05). On the other hand, accuracy remained around 92% for ≥6 mm follicles. Ultrasonography was useful again for detecting presence of CLs in all the ovaries; the efficiency for determining CLs number reached 86.7%, due to underestimation in ovaries with higher number of CLs (P < 0.05). Overall, there were no significant differences when comparing the accuracy of ex vivo and in vivo scannings for determination neither of the number of follicles in each size-category larger than 1.9 mm nor of the presence of ovulations or of the CLs number in each ovary. In conclusion, the use of ultrasonography allows an accurate detection of the presence and number of CLs and follicles ≥2 mm of diameter in sows, without significant differences between in vivo and ex vivo observations. 相似文献
15.
The herb Echinacea purpurea, also called purple coneflower, is regarded as an immune modulator. This study examined changes in cytokine production in blood samples from 30 volunteers before and during 8-day oral administration with an ethanolic extract of fresh Echinacea purpurea (Echinaforce®). Daily blood samples were ex vivo stimulated by LPS/SEB or Zymosan and analysed for a series of cytokines and haematological and metabolic parameters. Treatment reduced the proinflammatory mediators TNF-α and IL-1β by up to 24% (p < 0.05) and increased anti-inflammatory IL-10 levels by 13% (p < 0.05) in comparison to baseline. This demonstrated a substantial overall anti-inflammatory effect of Echinaforce® for the whole group (n = 28). Chemokines MCP-1 and IL-8 were upregulated by 15% in samples from subjects treated with Echinaforce® (p < 0.05). An analysis of a subgroup of volunteers who showed low pre-treatment levels of the cytokines MCP-1, IL-8, IL-10 or IFN-γ (n = 8) showed significant stimulation of these factors upon Echinaforce® treatment (30-49% increases; p < 0.05), whereas the levels in subjects with higher pre-treatment levels remained unaffected. We chose the term “adapted immune-modulation” to describe this observation. Volunteers who reported high stress levels (n = 7) and more than 2 colds per year experienced a significant transient increase in IFN-γ upon Echinaforce® treatment (>50%). Subjects with low cortisol levels (n = 11) showed significant down-regulation of the acute-phase proteins IL1-β, IL-6, IL-12 and TNF-α by Echinaforce® (range, 13-25%), while subjects with higher cortisol levels showed no such down-regulation. This is the first ex vivo study to demonstrate adapted immune-modulation by an Echinacea preparation. While Echinaforce® did not affect leukocyte counts, we speculate that the underlying therapeutic mechanism is based on differential multi-level modulation of the responses of the different types of leukocytes. Echinaforce® thus regulates the production of chemokines and cytokines according to current immune status, such as responsiveness to exogenous stimuli, susceptibility to viral infection and exposure to stress. 相似文献
16.
Kaoru Saijo Hideo Tsurushima Kouji Tsuboi Tadao Nose Akinori Oki Tadao Ohno 《Cytotechnology》2000,34(1-2):101-110
When CD4+ T cell-rich population appears in theinitial trial in induction cultures of humanautologous cytotoxic T lymphocytes (CTL), the cultureresults frequently in no or weak killing activity andtherefore usually be discarded as an `unsuccessful'CTL induction culture. However, addition of theinitial CD4+ T cell-rich population enabledefficient induction of the autologous CTL in theensuing trials. The CTL thus generated exhibitedstronger killing activities against autologous braintumor cells and ovarian tumor cells than previouslyobserved. This simple recycling of the primed butinert CD4+ T cell-rich population for CTLinduction will promote clinical practice of adoptiveimmunotherapy of human tumors with autologous CTL. 相似文献
17.
Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells 总被引:4,自引:0,他引:4
Petra Meissner Bernd Schröder Cornelia Herfurth Manfred Biselli 《Cytotechnology》1999,30(1-3):227-234
The ex vivo expansion of hematopoietic progenitor cells is of great interest for a variety of clinical applications, e.g.
bone marrow transplantation or gene therapy. Therefore it is of general interest to develop a culture system, able to mimic
the in vivo hematopoesis, which is a prerequisite for long-term hematopoietic culture. Our approach was to modify a continuously
perfused bioreactor for cultivation and expansion of human hematopoietic stem cells. Therefore we immobilized stromal cells
(human primary stromal cells or the murine cell line M2-10B4) in porous glass carriers in a fixed bed reactor and cocultivated
human hematopoietic progenitor cells for several weeks. After inoculation of mononuclear cells derived from umbilical cord
blood or peripheral blood stem cells both adherent and non adherent cells were harvested and analyzed by flow cytometry and
short-term colony assays. During cultivation there was a permanent production of progenitor cells and mature blood cells derived
from the immobilized cells in the carriers. We could demonstrate the immobilization of hematopoietic progenitor cells of the
myeloid system detectable in short-term colony assays. Additionally we could observe the expansion of very early progenitor
cells (CFU-GEMM) up to 4.2-fold and later progenitor cells (CFU-GM and BFU-E) up to 7-fold and 1.8-fold, respectively.
P.M. and B.S. contributed equal parts to this work.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
Iida H Takayanagi K Nakanishi T Kume A Muramatsu K Kiyohara Y Akiyama Y Osaka T 《Biotechnology and bioengineering》2008,101(6):1123-1128
Preparation of human immune T cells containing iron-oxide nanoparticles was carried out for the development of magnetically mediated immunotherapy. Peripheral blood lymphocytes (PBLs) after the incubation with magnetite nanoparticles were found to contain measurable ferric ions, which suggested the incorporation of magnetite nanoparticles. Transmission electron microscopic (TEM) study indicated that the incorporation of magnetite nanoparticles was mediated by endocytosis of PBLs. Furthermore, the effects of dosages and diameter of magnetite nanoparticles on the magnetite incorporation were investigated, and it was demonstrated that the increase in dosage promoted the incorporation of nanoparticles and the uptake into PBLs was more effective for magnetite nanoparticles, which formed smaller aggregations in medium. Finally, the demonstration of magnetite incorporation into enriched T cells and tumor antigen-specific cytotoxic T lymphocyte (CTL) line promises the achievement of magnetically mediated immunotherapy with tumor-specific CTLs containing magnetic nanoparticles. 相似文献
19.
Sarah Kircher Maylin Merino-Wong Barbara A. Niemeyer Dalia Alansary 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(6):932-943
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells. 相似文献
20.
Han H Peng JR Chen PC Gong L Qiao SS Wang WZ Cui ZQ Yu X Wei YH Leng XS 《Biochemical and biophysical research communications》2011,(3):530-535
Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin–biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells. 相似文献